若橢圓過拋物線y2=8x的焦點,且與雙曲線
x2
2
-y2=1
有相同的焦點,則該橢圓方程是(  )
A、
x2
4
+y2=1
B、
x2
4
+
y2
3
=1
C、
x2
16
+
y2
13
=1
D、
x2
16
+
y2
15
=1
分析:求出拋物線的焦點坐標,求出雙曲線的兩焦點坐標,即為橢圓的焦點坐標,即可得到c的值,然后根據(jù)橢圓的基本性質(zhì)得到a與b的關系,設出關于b的橢圓方程,把拋物線的焦點坐標代入即可求出b的值,得到橢圓方程.
解答:解:拋物線y2=8x的焦點為(2,0),雙曲線
x2
2
-y2=1
的焦點坐標為(
3
,0),(-
3
,0),
所以橢圓過(2,0),且橢圓的焦距2c=2
3
,即c=
3
,則a2-b2=c2=3,即a2=b2+3,
所以設橢圓的方程為:
x2
b2+3
+
y2
b2
=1,把(2,0)代入得:
4
b2+3
=1即b2=1,解得b=1,b=-1(b<0舍去),
則該橢圓的方程是:
x2
4
+y2=1

故選A
點評:此題考查學生掌握圓錐曲線的共同特征,會求橢圓的標準方程,是一道綜合題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012-2013學年遼寧省本溪一中高三(上)第三次月考數(shù)學試卷(理科)(解析版) 題型:選擇題

若橢圓過拋物線y2=8x的焦點,且與雙曲線x2-y2=-1有相同的焦點,則該橢圓的方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江西省南昌三中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:填空題

若橢圓過拋物線y2=8x的焦點,且與雙曲線x2-y2=1有相同的焦點,則該橢圓的方程為   

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省沈陽市高考數(shù)學三模試卷(理科)(解析版) 題型:選擇題

若橢圓過拋物線y2=8x的焦點,且與雙曲線有相同的焦點,則該橢圓方程是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省沈陽市高考數(shù)學三模試卷(文科)(解析版) 題型:選擇題

若橢圓過拋物線y2=8x的焦點,且與雙曲線有相同的焦點,則該橢圓方程是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案