如圖,雙曲線(a>0,b>0)的離心率為,F(xiàn)1、F2分別為左、右焦點,
M為左準線與漸近線在第二象限內(nèi)的交點,且.
(Ⅰ)求雙曲線的方程;
(Ⅱ)設(shè)A(m,0)和B(,0)(0<m<1)是x軸上的兩點.過點A作斜率不為0的直線l,使得l交雙曲線于C、D兩點,作直線BC交雙曲線于另一點E.證明直線DE垂直于x軸.
(Ⅰ)解:根據(jù)題設(shè)條件,F(xiàn)1(-c,0),F2(c,0).設(shè)點M(x,y).則x、y滿足
因,解得,故
=
利用a2+b2=c2,得c2=,于是a2=1,b2=.因此,所求雙曲線方程為
x2-4y2=1.
(Ⅱ)解:設(shè)點C(x1,y1),D(x2,y2),E(x3,y3),則直線l的方程為
y= (x-m).
于是C(x1,y1)、D(x2,y2)兩點坐標滿足
將(1)代入(2)得
(x12-2x1m+m2-4y12)x2+8my12x-4y12m2-x12+2mx1-m2=0.
由x21-4y21=1 (點C在雙曲線上),上面方程可化簡為
(m2-2x1m+1)x2+8my12x-(x12-2mx1+m2x12)=0.
由已知,顯然m2-2x1m+1≠0.于是x1x2=-.因為x1≠0,得
x2=
同理,C(x1,y1)、E(x3,y3)兩點坐標滿足
可解得
x3=
所以x2=x3,故直線DE垂直于x軸.
科目:高中數(shù)學 來源: 題型:
x2 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
x2 |
a2 |
y2 |
b2 |
a2 |
c |
查看答案和解析>>
科目:高中數(shù)學 來源:天津高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
A.|MO|-|MT|>b-a B.|MO|-|MT|=b-a
C.|MO|-|MT|<b-a D.無法判斷
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com