已知數(shù)列{an}滿足:a1=,且an=
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 證明:對于一切正整數(shù)n,不等式a1?a2?……an<2?n!
解:(1)將條件變?yōu)椋?-=,因此{1-}為一個(gè)等比數(shù)列,其首項(xiàng)為
1-,公比,從而1-=,據(jù)此得an=(n³1)…………1°
(2)證:據(jù)1°得,a1?a2?…an=
為證a1?a2?……an<2?n!
只要證nÎN*時(shí)有…………2°
顯然,左端每個(gè)因式都是正數(shù),先證明,對每個(gè)nÎN*,有
³1-()…………3°
用數(shù)學(xué)歸納法證明3°式:
(i)n=1時(shí),3°式顯然成立,
(ii) 設(shè)n=k時(shí),3°式成立,
即³1-()
則當(dāng)n=k+1時(shí),
³〔1-()〕?()
=1-()-()
³1-()即當(dāng)n=k+1時(shí),3°式也成立。
故對一切nÎN*,3°式都成立。
利用3°得,³1-()=1-
=1-=>
故2°式成立,從而結(jié)論成立。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
a | 2 n+1 |
a | 2 n |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知數(shù)列{an}滿足:a1=,且an=
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 證明:對于一切正整數(shù)n,不等式a1?a2?……an<2?n!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三上學(xué)期第三次理科數(shù)學(xué)測試卷(解析版) 題型:解答題
已知數(shù)列{an}滿足:a1=,且an=
(1) 求數(shù)列{an}的通項(xiàng)公式;
(2) 證明:對于一切正整數(shù)n,不等式a1·a2·……an<2·n!
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖南省高二上學(xué)期第三次階段性測試?yán)砜茢?shù)學(xué)卷 題型:選擇題
已知數(shù)列{an}滿足a1= 2,an+1-an+1=0(n∈N+),則此數(shù)列的通項(xiàng)an等于( )
A.n2+1 B.n+1 C.1-n D.3-n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011吉林一中高一下學(xué)期期末數(shù)學(xué) 題型:選擇題
已知數(shù)列{an}滿足a1>0,=,則數(shù)列{an}是 ( )
A.遞增數(shù)列 B.遞減數(shù)列 C.?dāng)[動數(shù)列 D.常數(shù)列
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com