如圖所示,三棱柱ABCA1B1C1中,AA1⊥平面ABC,D、E分別為A1B1、AA1的中點(diǎn),點(diǎn)F在棱AB上,且AF=AB.

(1)求證:EF∥平面BC1D;
(2)在棱AC上是否存在一個(gè)點(diǎn)G,使得平面EFG將三棱柱分割成的兩部分體積之比為1∶15,若存在,指出點(diǎn)G的位置;若不存在,說(shuō)明理由.

(1)見(jiàn)解析   (2) 不存在.理由見(jiàn)解析

解析(1)證明:取AB的中點(diǎn)M,

∵AF=AB,
∴F為AM的中點(diǎn),
又∵E為AA1的中點(diǎn),
∴EF∥A1M.
在三棱柱ABCA1B1C1中,D、M分別為A1B1、AB的中點(diǎn),
∴A1D∥BM,A1D=BM,
∴四邊形A1DBM為平行四邊形,
∴A1M∥BD,
∴EF∥BD,
∵BD⊆平面BC1D,EF?平面BC1D,
∴EF∥平面BC1D.
(2)解:設(shè)AC上存在一點(diǎn)G,使得平面EFG將三棱柱分割成兩部分的體積之比為1∶15,
=1∶16,
=
=×××
=·.
·=,
=,
∴AG=AC>AC.
所以符合要求的點(diǎn)G不存在.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在五面體中,已知平面,,,

(1)求證:;
(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知圓臺(tái)的上、下底面半徑分別是2、6,且側(cè)面面積等于兩底面面積之和。
(1)求該圓臺(tái)的母線長(zhǎng);(2)求該圓臺(tái)的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖①所示,在Rt△ABC中,AC=6,BC=3,∠ABC=90°,CD為∠ACB的平分線,點(diǎn)E在線段AC上,CE=4.如圖②所示,將△BCD沿CD折起,使得平面BCD⊥平面ACD,連結(jié)AB,設(shè)點(diǎn)F是AB的中點(diǎn).
圖①圖②
(1)求證:DE⊥平面BCD;
(2)若EF∥平面BDG,其中G為直線AC與平面BDG的交點(diǎn),求三棱錐B-DEG的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,四邊形ABCD中,AB⊥AD,AD∥BC,AD=6,BC=4,AB=2,點(diǎn)E、F分別在BC、AD上,EF∥AB.現(xiàn)將四邊形ABEF沿EF折起,使平面ABEF⊥平面EFDC,設(shè)AD中點(diǎn)為P.

(1)當(dāng)E為BC中點(diǎn)時(shí),求證:CP∥平面ABEF;
(2)設(shè)BE=x,問(wèn)當(dāng)x為何值時(shí),三棱錐ACDF的體積有最大值?并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示的多面體中,是菱形,是矩形,,

(1)求證:平;
(2)若,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四面體ABCD中,△ABC與△DBC都是邊長(zhǎng)為4的正三角形.

(1)求證:BCAD;
(2)試問(wèn)該四面體的體積是否存在最大值?若存在,求出這個(gè)最大值及此時(shí)棱長(zhǎng)AD的大。蝗舨淮嬖,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

右圖為一簡(jiǎn)單組合體,其底面ABCD為正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.

(1)請(qǐng)畫出該幾何體的三視圖;
(2)求四棱錐B­CEPD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,ABAD,點(diǎn)E在線段AD上,且CEAB.

(1)求證:CE⊥平面PAD;
(2)若PAAB=1,AD=3,CD,∠CDA=45°,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案