(2008•寶山區(qū)一模)如圖,在平面斜坐標(biāo)系中xoy中,∠xoy=60°,平面上任一點(diǎn)P的斜坐標(biāo)定義如下:若
OP
=x
e1
+y
e2
,其中
e1
,
e2
分別為與x軸,y軸同方向的單位向量,則點(diǎn)P的斜坐標(biāo)為(x,y).那么,以O(shè)為圓心,2為半徑的圓有斜坐標(biāo)系xoy中的方程是
x2+xy+y2-4=0
x2+xy+y2-4=0
分析:由題意,可設(shè)M是此圓上的任意一點(diǎn),則有|OM|=2,令點(diǎn)M的斜坐標(biāo)為(x,y),可得|OM|=|x
e1
+y
e2
|兩邊平方,根據(jù)斜坐標(biāo)系的定義進(jìn)行恒等變形,整理出圓的斜坐標(biāo)系下的方程即可
解答:解:設(shè)圓上動點(diǎn)M的斜坐標(biāo)為(x,y),則|OM|=|x
e1
+y
e2
|=2,
∴x2+2xy
e1
e2
+y2=4,
∴x2+y2+xy=4,
故答案為x2+xy+y2-4=0.
點(diǎn)評:本題考查坐標(biāo)系的選擇及意義,這是一個(gè)新定義的題,理解定義,根據(jù)圓的幾何特征建立起等式是解題的關(guān)鍵,
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)一模)已知直線l與拋物線y2=4x相交于A(x1,y1),B(x2,y2)兩個(gè)不同的點(diǎn),那么“直線l經(jīng)過拋物線y2=4x的焦點(diǎn)”是“x1x2=1”的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)一模)如圖,已知正△A1B1C1的邊長是1,面積是P1,取△A1B1C1各邊的中點(diǎn)A2,B2,C2,△A2B2C2的面積為P2,再取△A2B2C2各邊的中點(diǎn)A3,B3,C3,△A3B3C3的面積為P3,依此類推.記Sn=P1+P2+…+Pn,則
lim
n→∞
Sn
=
3
3
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)一模)如果執(zhí)行下面的程序框圖,那么輸出的S=
10000
10000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)一模)函數(shù)是這樣定義的:對于任意整數(shù)m,當(dāng)實(shí)數(shù)x滿足不等式|x-m|<
1
2
時(shí),有f(x)=m.
(1)求函數(shù)的定義域D,并畫出它在x∈D∩[0,4]上的圖象;
(2)若數(shù)列an=2+10•(
2
5
)n
,記Sn=f(a1)+f(a2)+f(a3)+…+f(an),求Sn;
(3)若等比數(shù)列{bn}的首項(xiàng)是b1=1,公比為q(q>0),又f(b1)+f(b2)+f(b3)=4,求公比q的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶山區(qū)一模)過點(diǎn)A(2,-3),且法向量是
m
=(4,-3)
的直線的點(diǎn)方向式方程是
x-2
3
=
y+3
4
x-2
3
=
y+3
4

查看答案和解析>>

同步練習(xí)冊答案