直線l經(jīng)過點(diǎn)M(4,2),與x軸、y軸分別交于A、B兩點(diǎn),且|AM|=|BM|,求直線l的方程.

解析:設(shè)A(x,0)、B(0,y),∵|AM|=|BM|,即3|AM|=2|BM|.

∴3=±2.

=(4-x,2),=(4,2-y),

(1)若3=2,則3(4-x,2)=2(4,2-y),

∴kAB==.

此時(shí),直線l的方程為y-2= (x-4),即3x-4y-4=0.

(2)若3=-2,則3(4-x,2)=-2(4,2-y),

∴x=∴kAB==-.

此時(shí),直線l的方程為y-2=-(x-4),即3x+4y-20=0.

綜上所述,適合題意的直線l的方程為3x+4y-20=0或3x-4y-4=0.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距為4,且與橢圓x2+
y2
2
=1
有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在極坐標(biāo)系中,點(diǎn)M坐標(biāo)是(3,
π
2
),曲線C的方程為ρ=2
2
sin(θ+
π
4
)
;以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,斜率是-1的直線l 經(jīng)過點(diǎn)M.
(1)寫出直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(2)求證直線l和曲線C相交于兩點(diǎn)A、B,并求|MA|•|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年湖北省天門市高考數(shù)學(xué)模擬試卷3(文科)(解析版) 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省天門市高三天5月模擬文科數(shù)學(xué)試題 題型:解答題

已知橢圓(a>b>0)的焦距為4,且與橢圓有相同的離心率,斜率為k的直線l經(jīng)過點(diǎn)M(0,1),與橢圓C交于不同兩點(diǎn)A、B.

   (1)求橢圓C的標(biāo)準(zhǔn)方程;

   (2)當(dāng)橢圓C的右焦點(diǎn)F在以AB為直徑的圓內(nèi)時(shí),求k的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案