(2011•寶坻區(qū)一模)已知{an} 是首項為1的等比數(shù)列,且4a1,2a2,a3成等差數(shù)列,則數(shù)列{
1
an
}的前5項的和為( 。
分析:利用{an}是首項為1的等比數(shù)列,且4a1,2a2,a3成等差數(shù)列,求出公比,再利用等比數(shù)列的求和公式,即可得到結論.
解答:解:∵{an}是首項為1的等比數(shù)列,且4a1,2a2,a3成等差數(shù)列,
∴4q=4+q2
∴q=2
∴數(shù)列{
1
an
}是以1為首項,
1
2
為公比的等比數(shù)列
∴前5項的和為
1-
1
25
1-
1
2
=
31
16

故選C.
點評:本題考查等差數(shù)列與等比數(shù)列的綜合,考查等比數(shù)列的求和公式,考查學生的計算能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)一口袋中裝有編號為1.2.3.4.5.6.7的七個大小相同的小球,現(xiàn)從口袋中一次隨機抽取兩球,每個球被抽到的概率是相等的,用符號(a,b)表示事件“抽到的兩球的編號分別為a,b,且a<b”.
(Ⅰ)總共有多少個基本事件?用列舉法全部列舉出來;
(Ⅱ)求所抽取的兩個球的編號之和大于6且小于10的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)如圖,△BCD所在的平面垂直于正△ABC所在的平面,∠BCD=90°,PA⊥平面ABC,DC=BC=2PA,E,F(xiàn)分別為DB,CB的中點,
(1)證明PE∥平面ABC;
(2)證明AE⊥BC;
(3)求直線PF與平面BCD所成的角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)已知向量
a
=(1,2),
b
=(cosa,sina)
,
a
b
,則tan(a+
π
4
)(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)數(shù)列{an}為正項等比數(shù)列,若a2=1,且an+an+1=6an-1(n∈N,n≥2),則此數(shù)列的前4項和S4=
15
2
15
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•寶坻區(qū)一模)設函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R.
(1)求函數(shù)f(x)的最小正周期及在區(qū)間[0,
π
2
]上的值域;
(2)記△ABC的內角A,B,C的對邊分別為a,b,c,若f(A)=
3
2
,且a=
3
2
b,求角B的值.

查看答案和解析>>

同步練習冊答案