在公比為整數(shù)的等比數(shù)列{an}中,如果a1+a4=18,a2+a3=12,那么該數(shù)列的前8項(xiàng)之和為( )
A.513
B.512
C.510
D.
【答案】分析:由a1+a4=18,a2+a3=12可先用首項(xiàng)a1及公比q表示可得,a1(1+q3)=18,a1q(1+q)=12,聯(lián)立方程可求a1、q,然后代入等比數(shù)列的前n和公式可求答案.
解答:解:設(shè)等比數(shù)列的首項(xiàng)為a1,公比為 q
∵a1+a4=18,a2+a3=12

兩式相除可得,2q2-5q+2=0
由公比 q為整數(shù)可得,q=2,a1=2
代入等比數(shù)列的和公式可得,
故選:C
點(diǎn)評(píng):本題主要考查了利用基本量q,a1表示數(shù)列中的項(xiàng),而在建立關(guān)于q,a1的方程時(shí),常利用兩式相除解方程,等比數(shù)列的前n項(xiàng)和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分18分) 本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分. 第3小題滿分8分.

(文)對(duì)于數(shù)列,從中選取若干項(xiàng),不改變它們?cè)谠瓉?lái)數(shù)列中的先后次序,得到的數(shù)列稱為是原來(lái)數(shù)列的一個(gè)子數(shù)列. 某同學(xué)在學(xué)習(xí)了這一個(gè)概念之后,打算研究首項(xiàng)為,公差為的無(wú)窮等差數(shù)列的子數(shù)列問題,為此,他取了其中第一項(xiàng),第三項(xiàng)和第五項(xiàng).

(1) 若成等比數(shù)列,求的值;

(2) 在, 的無(wú)窮等差數(shù)列中,是否存在無(wú)窮子數(shù)列,使得數(shù)列為等比數(shù)列?若存在,請(qǐng)給出數(shù)列的通項(xiàng)公式并證明;若不存在,說(shuō)明理由;

(3) 他在研究過(guò)程中猜想了一個(gè)命題:“對(duì)于首項(xiàng)為正整數(shù),公比為正整數(shù)()的無(wú)窮等比數(shù)  列,總可以找到一個(gè)子數(shù)列,使得構(gòu)成等差數(shù)列”. 于是,他在數(shù)列中任取三項(xiàng),由的大小關(guān)系去判斷該命題是否正確. 他將得到什么結(jié)論?

 

查看答案和解析>>

同步練習(xí)冊(cè)答案