分析 (1)根據(jù)向量的數(shù)量積公式得出f(x)的解析式,并利用二倍角公式化簡(jiǎn),根據(jù)周期公式計(jì)算周期;
(2)根據(jù)正弦函數(shù)的性質(zhì)列方程得出m,從而得出f(x)的最大值和對(duì)稱軸.
解答 解:(1)$f(x)=\sqrt{3}sinxcosx+{cos^2}x+m$,
∴$f(x)=\frac{{\sqrt{3}}}{2}sin2x+\frac{1}{2}cos2x+\frac{1}{2}+m$=$sin(2x+\frac{π}{6})+\frac{1}{2}+m$,
所以最小正周期T=π,
(2)∵f(x)的最小值為1,∴$-1+\frac{1}{2}+m=1$,
解得$m=\frac{3}{2}$,
∴f(x)=sin(2x+$\frac{π}{6}$)+2,∴fmax(x)=3.
令$2x+\frac{π}{6}=kπ+\frac{π}{2}(k∈Z)$,解得$x=\frac{kπ}{2}+\frac{π}{6}(k∈Z)$,
故函數(shù)f(x)的圖象的對(duì)稱軸方程為$x=\frac{kπ}{2}+\frac{π}{6}(k∈Z)$.
點(diǎn)評(píng) 本題考查了平面向量的數(shù)量積運(yùn)算,三角函數(shù)的恒等變換,正弦函數(shù)的性質(zhì),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 5 | B. | 1 | C. | $\frac{1}{7}$ | D. | $\frac{1}{63}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2016}{2017}$ | B. | $\frac{2017}{2016}$ | C. | $\frac{2015}{2017}$ | D. | $\frac{2015}{2016}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com