設(shè)F1、F2分別是橢圓的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求的最大值和最小值;
(3)是否存在過點A(5,0)的直線l與橢圓交于不同的兩點C、D,使得|F2C|=|F2D|?若存在,求直線l的方程;若不存在,請說明理由.
【答案】分析:(1)易知直線y=x-1與x軸的交點是(1,0),利用右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍所以c=1,且b=2c=2,故方程可求;
(2)設(shè)P(x,y),則=
根據(jù)x的取值范圍能夠得到的最大值和最小值;
(3)假設(shè)存在滿足條件的直線l.由題意知點A(5,0)在橢圓的外部,當直線l的斜率不存在時,直線l與橢圓無交點,所在直線l斜率存在,設(shè)為k,則直線l的方程為y=k(x-5),再把直線y=k(x-5)和橢圓 聯(lián)系方程用根的判別式求l的方程或說明理由.
解答:解:(1)易知直線y=x-1與x軸的交點是(1,0),所以c=1,且b=2c=2,
所以橢圓的方程是…(4分)
(2)易知F1=(-1,0),F(xiàn)2(1,0)…(6分)
設(shè)P(x,y),則
=…(8分)∵,∴當x=0,即點P為橢圓短軸端點時,有最小值3;
,即點P為橢圓長軸端點時,有最大值4     …(10分)
(3)假設(shè)存在這樣的直線:y=kx+b   5k+b=0 k=-
連接F2C,F(xiàn)2D,并作F2H垂直于CD,交直線y與H,△F2CD為等腰△
設(shè)C 點的坐標為(x1,y1)D 點的坐標為(x2,y2),DH的斜率為:
把y=kx+b和聯(lián)立,并消去y:
(20+b2)x2-10b2 x+25b2-100=0
根據(jù)二次方程定理:
同理
∴直線的斜率.方程b無解
故不存在直線,使得|F2C|=|F2D|
點評:本題的考點是直線與圓錐曲線的綜合運用.主要考查橢圓的標準方程,考查橢圓與向量的結(jié)合,最值的求解,考查代入法求軌跡方程,解題時要仔細審題,認真解答.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
短軸長為2,P(x0,y0)(x0≠±a)是橢圓上一點,A,B分別是橢圓的左、右頂點,直線PA,PB的斜率之積為-
1
4

(1)求橢圓的方程;
(2)當∠F1PF2為鈍角時,求P點橫坐標的取值范圍;
(3)設(shè)F1,F(xiàn)2分別是橢圓的左右焦點,M、N是橢圓右準線l上的兩個點,若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(09年豐臺區(qū)二模)(14分)

設(shè)F1、F2分別是橢圓的左、右焦點。

   (I)若M是該橢圓上的一個動點,求的最大值和最小值;

    (II)設(shè)過定點(0,2)的直線l與橢圓交于不同兩點A、B,且∠AOB為鈍角(其中O為坐標原點),求直線l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1、F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市南匯區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)F1、F2分別是橢圓的左、右焦點,其右焦點是直線y=x-1與x軸的交點,短軸的長是焦距的2倍.
(1)求橢圓的方程;
(2)若P是該橢圓上的一個動點,求的最大值和最小值;
(3)若P是該橢圓上的一個動點,點A(5,0),求線段AP中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市高三上學(xué)期第3次月考理科數(shù)學(xué)試卷(解析版) 題型:填空題

設(shè)F1、F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為                   .

 

查看答案和解析>>

同步練習冊答案