在平面直角坐標(biāo)系xOy中,F是拋物線C:x2=2py(p>0)的焦點,M是拋物線C上位于第一象限內(nèi)的任意一點,過M,F,O三點的圓的圓心為Q,點Q到拋物線C的準(zhǔn)線的距離為.
(1)求拋物線C的方程;
(2)是否存在點M,使得直線MQ與拋物線C相切于點M?若存在,求出點M的坐標(biāo);若不存在,說明理由.
(3)若點M的橫坐標(biāo)為,直線l:y=kx+與拋物線C有兩個不同的交點A,B,l與圓Q有兩個不同的交點D,E,求當(dāng)≤k≤2時,|AB|2+|DE|2的最小值.
解:(1)依題意知F,圓心Q在線段OF的垂直平分線y=上,
因為拋物線C的準(zhǔn)線方程為y=-,
所以=,
即p=1.
因此拋物線C的方程為x2=2y.
(2)假設(shè)存在點M (x0>0)滿足條件,拋物線C在點M處的切線斜率為y′==x0,
所以直線MQ的方程為y-=x0(x-x0).
令y=得xQ=+.
所以Q(+,).
又|QM|=|OQ|,
故(-)2+(-)2=(+)2+,
因此(-)2=.
又x0>0,
所以x0=,此時M(,1).
故存在點M(,1),
使得直線MQ與拋物線C相切于點M.
(3)當(dāng)x0=時,由(2)得Q(,),
☉Q的半徑為r==,
所以☉Q的方程為(x-)2+(y-)2=.
由
整理得2x2-4kx-1=0.
設(shè)A,B兩點的坐標(biāo)分別為(x1,y1),(x2,y2),
由于Δ1=16k2+8>0,x1+x2=2k,x1x2=-,
所以|AB|2=(1+k2)[(x1+x2)2-4x1x2]
=(1+k2)(4k2+2).
由
整理得(1+k2)x2-x-=0.
設(shè)D,E兩點的坐標(biāo)分別為(x3,y3),(x4,y4),
由于Δ2=+>0,x3+x4=,
x3x4=-.
所以|DE|2=(1+k2)[(x3+x4)2-4x3x4]
=+.
因此|AB|2+|DE|2=(1+k2)(4k2+2)+ +.
令1+k2=t,
由于≤k≤2,
則≤t≤5,
所以|AB|2+|DE|2=t(4t-2)+ +
=4t2-2t++,
設(shè)g(t)=4t2-2t++,t∈,
因為g′(t)=8t-2-,
所以當(dāng)t∈時,g′(t)≥g′=6,
即函數(shù)g(t)在t∈上是增函數(shù),
所以當(dāng)t=時,g(t)取到最小值,
因此,當(dāng)k=時,|AB|2+|DE|2取到最小值.
科目:高中數(shù)學(xué) 來源: 題型:
已知動點M(x,y)到直線l:x=4的距離是它到點N(1,0)的距離的2倍.
(1)求動點M的軌跡C的方程;
(2)過點P(0,3)的直線m與軌跡C交于A,B兩點,若A是PB的中點,求直線m的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)橢圓+y2=1的左焦點為F,P為橢圓上一點,其橫坐標(biāo)為,則|PF|等于( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,F1,F2是橢圓C1: +y2=1與雙曲線C2的公共焦點,A,B分別是C1,C2在第二、四象限的公共點.若四邊形AF1BF2為矩形,則C2的離心率是( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
拋物線C1:y=x2(p>0)的焦點與雙曲線C2: -y2=1的右焦點的連線交C1于第一象限的點M.若C1在點M處的切線平行于C2的一條漸近線,則p等于( )
(A) (B) (C) (D)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖所示,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M在點N的右側(cè)),且|MN|=3,已知橢圓D: +=1(a>b>0)的焦距等于2|ON|,且過點(,).
(1)求圓C和橢圓D的方程;
(2)若過點M斜率不為零的直線l與橢圓D交于A、B兩點,求證:直線NA與直線NB的傾斜角互補(bǔ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對該班50名學(xué)生進(jìn)行了問卷調(diào)查,得到了如下的2×2列聯(lián)表:
| 喜愛打籃球 | 不喜愛打籃球 | 合計 |
男生 | 20 | 5 | 25 |
女生 | 10 | 15 | 25 |
合計 | 30 | 20 | 50 |
則至少有________的把握認(rèn)為喜愛打籃球與性別有關(guān)?(請用百分?jǐn)?shù)表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com