已知方程x2+y2+kx+2y+k2=0所表示的圓有最大的面積,則直線y=(k+1)x+2的傾斜角α=
π
4
π
4
分析:利用圓的一般式方程求出圓的半徑,通過面積的最大值,求出k與r,然后求出直線的斜率.
解答:解:r=
1
2
k2+4-4k2
≤1
,當(dāng)有最大半徑時圓有最大面積,此時k=0,r=1,
∴直線方程為y=x+2,設(shè)傾斜角為α,則由tanα=1,且α∈[0,π)得α=
π
4

故答案為:
π
4
點評:本題考查圓的一般式方程的應(yīng)用,直線的斜率的求法,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2-x+4y+m=0.
(1)若此方程表示圓,求的取值范圍;
(2)若(1)中的圓的直線x+2y-1=0相交于M、N兩點,且OM⊥ON(O為坐標(biāo)原點),求m;
(3)在(2)得條件下,求以MN為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1)求實數(shù)m的取值范圍;
(2)求該圓半徑r的取值范圍;
(3)求圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2+4x-2y-4=0,則x2+y2的最大值是
14+6
5
14+6
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知方程x2+y2-2mx-4y+5m=0的曲線是圓C
(1)求m的取值范圍;
(2)當(dāng)m=-2時,求圓C截直線l:2x-y+1=0所得弦長;
(3)若圓C與直線2x-y+1=0相交于M,N兩點,且以MN為直徑的圓過坐標(biāo)原點O,求m的值?

查看答案和解析>>

同步練習(xí)冊答案