如圖,在正方體ABCD-A1B1C1D1中,過A點作面A1BD的垂線,垂足為P.則下列命題:
①P是△A1BD的重心;
②AP也垂直于面CB1D1;
③AP的延長線必通過點C1;
④AP與面AA1D1D所成角為45°.
其中,正確的命題是( )

A.①②
B.①②③
C.②③④
D.①③④
【答案】分析:在正方體中,體對角線與過端點的三條棱的另三個端點確定的平面是垂直的,且垂足也是該三角形的重心,由此判斷即得
解答:解:如圖由正方體的性質(zhì)知面A1BD與體對角線AC1垂直,三角形A1BD是一個正三角形,
故它們的交點也是三角形的中心,面A1BD與面CB1D1是平行的關系,且它也是一個正三角形;
由此則可以判斷①P是△A1BD的重心是正確的;
②AP也垂直于面CB1D1正確;
③AP的延長線必通過點C1;正確;
④AP與面AA1D1D所成角為45°不正確,因為該線面角是∠C1AD,其不是一個等腰直角三角形,
故選B.
點評:在幾何體中考查點線面之間的關系和角與距離是近今年高考的一個趨勢,因為此類題目比較靈活.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,記M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小關系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)若Rt△ABC中兩直角邊為a、b,斜邊c上的高為h,則
1
h2
=
1
a2
+
1
b2
,如圖,在正方體的一角上截取三棱錐P-ABC,PO為棱錐的高,類比平面幾何中的結(jié)論,得到此三棱錐中的一個正確結(jié)論為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為DD1的中點,
(1)求證:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,點P是上底面A1B1C1D1內(nèi)一動點,則三棱錐P-ABC的主視圖與左視圖的面積的比值為( 。

查看答案和解析>>

同步練習冊答案