在四棱錐中,側(cè)面底面,,底面是直角梯形,,,,

(1)求證:平面;
(2)設(shè)為側(cè)棱上一點,,試確定的值,使得二面角

(1)平詳見解析;(2).

解析試題分析:平面底面,,所以平面,所以,故可以為原點建立空間直角坐標(biāo)系.根據(jù)題中所給數(shù)據(jù)可得,
(1)由數(shù)量積為0,可得由此得,,由此得平面.(2) 由于平面,所以平面的法向量為.由,可得,所以.又.設(shè)平面的法向量為
,,取.由于二面角,所以,解此方程可得的值.
試題解析:(1)平面底面,,所以平面,
所以,以為原點建立空間直角坐標(biāo)系.

,,所以,,
又由平面,可得,所以平面
(2)平面的法向量為
,,所以,
設(shè)平面的法向量為,,,
,,得 所以,,所以,
所以,注意到,得

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

在如圖所示的幾何體中,平面, 是的中點,
(1)證明:∥平面;
(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐中,直線平面,且
,又點,分別是線段,,的中點,且點是線段上的動點.

(1)證明:直線平面;
(2)若,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在邊長為1的等邊三角形ABC中,DE分別是AB,AC邊上的點,AD=AE,FBC的中點,AFDE交于點G,將沿AF折起,得到如圖所示的三棱錐,其中.

(1) 證明://平面;
(2) 證明:平面;
(3)當(dāng)時,求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱錐中,,,,點在平面內(nèi)的射影恰為的重心,M為側(cè)棱上一動點.

(1)求證:平面平面;
(2)當(dāng)M為的中點時,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知空間三點A(-2,0,2),B(-1,1,2),C(-3,0,4).設(shè)a,b.
(1)求ab的夾角θ;
(2)若向量kab與ka-2b互相垂直,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在斜三棱柱中,O是AC的中點,平面,.

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,三棱柱ABC-A1B1C1的所有棱長都是2,又AA1⊥平面ABC,D,E分別是AC,CC1的中點.

(1)求證:AE⊥平面A1BD.
(2)求二面角D-BA1-A的余弦值.
(3)求點B1到平面A1BD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱柱ABCDA1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,ABAA1.
 
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大。

查看答案和解析>>

同步練習(xí)冊答案