設(shè)數(shù)列{an}滿足條件:a1=8,a2=0,a3=-7,且數(shù)列{an+1-an}(n∈N*)是等差數(shù)列.
(1)設(shè)cn=an+1-an,求數(shù)列{cn}的通項公式;
(2)若,求Sn=b1+b2+…+bn
(3)數(shù)列{an}的最小項是第幾項?并求出該項的值.
【答案】分析:(1)根據(jù){an+1-an}為等差數(shù)列,cn=an+1-an,可得{cn}為等差數(shù)列,求出首項與公差,即可求得數(shù)列{cn}的通項公式;
(2),再同乘公比,利用錯位相減法,可求和;
(3)利用an=(an-an-1)+(an-1-an-2)+…(a3-a2)+(a2-a1)+a1,再利用配方法,即可求得結(jié)論.
解答:解:(1)∵{an+1-an}為等差數(shù)列,cn=an+1-an,∴{cn}為等差數(shù)列,
首項c1=a2-a1=-8,公差d=c2-c1=-7-(-8)=1
∴cn=c1+(n-1)d=-8+(n-1)•1=n-9.…(3分)
(2),∴

①-②可得

.…(8分)
(3)an=(an-an-1)+(an-1-an-2)+…(a3-a2)+(a2-a1)+a1=
=
當(dāng)n=9或n=10時,最小項a9=a10=-28.…(12分)
點評:本題考查數(shù)列的通項與求和,解題的關(guān)鍵是掌握等差數(shù)列的通項公式及錯位相減法求和,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an},{bn}是兩個數(shù)列,M(1,2),An(2,an),Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點.對n∈N*,若三點M,An,B共線,
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項為8,公比為4的等比數(shù)列.求證:點列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上;
(3)記數(shù)列{an}、{bn}的前m項和分別為Am和Bm,對任意自然數(shù)n,是否總存在與n相關(guān)的自然數(shù)m,使得anBm=bnAm?若存在,求出m與n的關(guān)系,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(1,0),B(0,1)和互不相同的點P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*),其中an,bn分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點,P1是線段AB的中點.
(1)求a1,b1的值;
(2)判斷點P1,P2,P3,…,Pn,…能否在同一條直線上,并證明你的結(jié)論;
(3)設(shè)數(shù)列an的公差為2,在數(shù)列cn中,c1=1,c2=-13,cn+2-2cn+1+cn=an(n∈N*),求出cn取得最小值時n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}{bn}是兩個數(shù)列,點M(1,2),An(2,an)Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點.
(Ⅰ)對n∈N*,若三點M,An,Bn共線,求數(shù)列{an}的通項公式;
(Ⅱ)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項為8,公比為4的等比數(shù)列.求證:點列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上,并求出此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中的真命題為
(2)(3)(4)(5)
(2)(3)(4)(5)

(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年上海市上海中學(xué)高三數(shù)學(xué)綜合練習(xí)試卷(7)(解析版) 題型:解答題

下列命題中的真命題為   
(1)復(fù)平面中滿足|z-2|-|z+2|=1的復(fù)數(shù)z的軌跡是雙曲線;
(2)當(dāng)a在實數(shù)集R中變化時,復(fù)數(shù)z=a2+ai在復(fù)平面中的軌跡是一條拋物線;
(3)已知函數(shù)y=f(x),x∈R+和數(shù)列an=f(n),n∈N,則“數(shù)列an=f(n),n∈N遞增”是“函數(shù)y=f(x),x∈R+遞增”的必要非充分條件;
(4)在平面直角坐標(biāo)系xoy中,將方程g(x,y)=0對應(yīng)曲線按向量(1,2)平移,得到的新曲線的方程為g(x-1,y-2)=0;
(5)設(shè)平面直角坐標(biāo)系xoy中方程F(x,y)=0表橢圓示一個,則總存在實常數(shù)p、q,使得方程F(px,qy)=0表示一個圓.

查看答案和解析>>

同步練習(xí)冊答案