集合Mk(k≥0)是滿足下列條件的函數(shù)f(x)全體:如果對于任意的x1,x2∈(k,+∞),都有f(x1)+f(x2)>f(x1+x2).
(1)函數(shù)f(x)=x2是否為集合M0的元素,說明理由;
(2)求證:當0<a<1時,函數(shù)f(x)=ax是集合M1的元素;
(3)對數(shù)函數(shù)f(x)=lgx∈Mk,求k的取值范圍.
分析:(1)由f(x1)=22=4,f(x2)=32=9,f(x1+x2)=52=25>f(x1)+f(x2)可判斷函數(shù)f(x)是否是集合M0的元素
(2)要證明當0<a<1時,函數(shù)f(x)=ax是集合M1的元素,只要證對于任意的x1,x2∈(k,+∞),都有f(x1)+f(x2)>f(x1+x2),即證f(x1)+f(x2)-f(x1+x2)>0
(3)由對數(shù)函數(shù)f(x)=lgx∈Mk,可得任取x1,x2∈(k,+∞),f(x1)+f(x2)>f(x1+x2)成立,代入整理可得1>
1
x1
+
1
x2
對一切x1,x2∈(k,+∞)成立,結合
1
x1
+
1
x2
∈(0,
2
k
),可求k的范圍
解答:解:(1)取x1=2,x2=3∈(0,+∞),…1分
f(x1)=22=4,f(x2)=32=9,f(x1+x2)=52=25>f(x1)+f(x2),…1分
∴函數(shù)f(x)=x2不是集合M0的元素.…1分
(2)證明:任取x1,x2∈(1,+∞),
f(x1)+f(x2)-f(x1+x2)=ax1+ax2-ax1+x2…1分
=1-(1-ax1)(1-ax2),…1分
∵0<a<1,x1>1,根據(jù)指數(shù)函數(shù)的性質,得0<ax1<1,∴0<1-ax1<1
同理,0<1-ax2<1,∴0<(1-ax1)(1-ax2)<1,∴1-(1-ax1)(1-ax2)>0
∴f(x1)+f(x2)>f(x1+x2),∴函數(shù)f(x)=ax是集合M1的元素.…2分
(3)∵對數(shù)函數(shù)f(x)=lgx∈Mk,∴任取x1,x2∈(k,+∞),f(x1)+f(x2)>f(x1+x2)成立,
即lgx1+lgx2=lg(x1•x2)>lg(x1+x2)成立,
∴x1•x2>x1+x2對一切x1,x2∈(k,+∞)成立,…1分
1>
1
x1
+
1
x2
對一切x1,x2∈(k,+∞)成立,
∵x1,x2∈(k,+∞),∴
1
x1
+
1
x2
∈(0,
2
k
),
2
k
≤1,∴k≥2.…2分.
點評:本題以新定義為載體主要考查了閱讀新知識并轉化為解題的工具,指數(shù)函數(shù)的函數(shù)值、對數(shù)函數(shù)的函數(shù)值的綜合應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

集合Mk(k≥0)是滿足下列條件的函數(shù)f(x)全體:如果對于任意的x1,x2∈(k,+∞),都有f(x1)+f(x2)>f(x1+x2).
(1)函數(shù)f(x)=x2是否為集合M0的元素,說明理由;
(2)求證:當0<a<1時,函數(shù)f(x)=ax是集合M1的元素;
(3)對數(shù)函數(shù)f(x)=lgx∈Mk,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年遼寧省丹東市寬甸二中高一(上)期末數(shù)學試卷(解析版) 題型:解答題

集合Mk(k≥0)是滿足下列條件的函數(shù)f(x)全體:如果對于任意的x1,x2∈(k,+∞),都有f(x1)+f(x2)>f(x1+x2).
(1)函數(shù)f(x)=x2是否為集合M的元素,說明理由;
(2)求證:當0<a<1時,函數(shù)f(x)=ax是集合M1的元素;
(3)對數(shù)函數(shù)f(x)=lgx∈Mk,求k的取值范圍.

查看答案和解析>>

同步練習冊答案