【題目】如圖,底面ABCD是邊長為3的正方形,平面ADEF⊥平面ABCDAFDE,ADDE,AF,DE.

1)求直線CA與平面BEF所成角的正弦值;

2)在線段AF上是否存在點(diǎn)M,使得二面角MBED的大小為60°?若存在,求出的值;若不存在,說明理由.

【答案】1;(2)存在;.

【解析】

1)以D為坐標(biāo)原點(diǎn),射線DA,DC,DE分別為x軸,y軸,z軸的正半軸,建立空間坐標(biāo)系,求出坐標(biāo),進(jìn)而求出坐標(biāo),求出平面BEF的法向量坐標(biāo),按空間向量線面角公式,即可求解;

(2)設(shè)M30,t),0≤t,求出平面MBE的法向量坐標(biāo),利用是平面BED的一個(gè)法向量,按空間向量面面角公式,即可求出結(jié)論.

1)因?yàn)?/span>DA,DC,DE兩兩垂直,所以以D為坐標(biāo)原點(diǎn),

射線DA,DCDE分別為x軸,y軸,z軸的正半軸,

建立空間直角坐標(biāo)系Dxyz,如圖所示.A30,0),

F3,0),E0,0,),B33,0),

C0,30),=(3,-3,0),=(-3,-3,3),

=(3,0,.

設(shè)平面BEF的法向量為=(x1,y1z1),

x1,得=(,2,3.

所以

所以直線CA與平面BEF所成角的正弦值為.

2)假設(shè)存在點(diǎn)M在線段AF上滿足條件,

設(shè)M30,t),0≤t

=(0,-3t),=(-3,-3,.

設(shè)平面MBE的法向量為=(x2,y2z2),

y2t,得m=(t,t,3.

易知=(3,-3,0)是平面BED的一個(gè)法向量,

所以|,

整理得2t2t150,解得tt(舍去),

故在線段AF上存在點(diǎn)M,使得二面角MBED的大小為60°,此時(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)xlnx,g(x)x2ax.

1)求函數(shù)f(x)在區(qū)間[t,t1](t0)上的最小值m(t);

2)令h(x)g(x)f(x)A(x1,h(x1)),B(x2h(x2))(x1x2)是函數(shù)h(x)圖像上任意兩點(diǎn),且滿足1,求實(shí)數(shù)a的取值范圍;

3)若x(0,1],使f(x)≥成立,求實(shí)數(shù)a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知南北回歸線的緯度為,設(shè)地球表面某地正午太陽高度角為,為此時(shí)太陽直射緯度,為該地的緯度值,那么這三個(gè)量之間的關(guān)系是.當(dāng)?shù)叵陌肽?/span>取正值,冬半年取負(fù)值,如果在北半球某地(緯度為)的一幢高為的樓房北面蓋一新樓,要使新樓一層正午的太陽全年不被前面的樓房遮擋,兩樓的距離應(yīng)不小于______(結(jié)果用含有的式子表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由國家統(tǒng)計(jì)局提供的數(shù)據(jù)可知,2012年至2018年中國居民人均可支配收入(單位:萬元)的數(shù)據(jù)如下表:

年份

2012

2013

2014

2015

2016

2017

2018

年份代號(hào)

1

2

3

4

5

6

7

人均可支配收入

1.65

1.83

2.01

2.19

2.38

2.59

2.82

1)求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)利用(1)中的回歸方程,分析2012年至2018年中國居民人均可支配收入的變化情況,并預(yù)測(cè)2019年中國居民人均可支配收入

附注:參考數(shù)據(jù):

參考公式:回歸直線方程的斜率和截距的最小二乘估計(jì)公式分別為: ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是正方形,點(diǎn)在以為直徑的半圓弧上(不與,重合),為線段的中點(diǎn),現(xiàn)將正方形沿折起,使得平面平面.

1)證明:平面.

2)若,當(dāng)三棱錐的體積最大時(shí),求到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,PA⊥底面ABC, .點(diǎn)DE,N分別為棱PA,PC,BC的中點(diǎn),M是線段AD的中點(diǎn),PA=AC=4,AB=2.

(Ⅰ)求證:MN∥平面BDE;

(Ⅱ)求二面角C-EM-N的正弦值;

(Ⅲ)已知點(diǎn)H在棱PA上,且直線NH與直線BE所成角的余弦值為,求線段AH的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線的兩個(gè)焦點(diǎn)為、P為該雙曲線上一點(diǎn),滿足P到坐標(biāo)原點(diǎn)O的距離為d,且,則________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正方體,過對(duì)角線作平面交棱于點(diǎn)E,交棱于點(diǎn)F,則:

①平面分正方體所得兩部分的體積相等;

②四邊形一定是平行四邊形;

③平面與平面不可能垂直;

④四邊形的面積有最大值.

其中所有正確結(jié)論的序號(hào)為(

A.①④B.②③C.①②④D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時(shí),求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案