已知點(diǎn),,動(dòng)點(diǎn)G滿足.
(Ⅰ)求動(dòng)點(diǎn)G的軌跡的方程;
(Ⅱ)已知過點(diǎn)且與軸不垂直的直線l交(Ⅰ)中的軌跡于P,Q兩點(diǎn).在線段上是否存在點(diǎn),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求實(shí)數(shù)m的取值范圍;若不存在,請(qǐng)說明理由.
(Ⅰ)的方程是.(Ⅱ)存在,實(shí)數(shù)m的取值范圍是.
【解析】
試題分析:(Ⅰ)由橢圓的定義知,動(dòng)點(diǎn)G的軌跡是以,為焦點(diǎn)的橢圓,由題設(shè)即可得動(dòng)點(diǎn)G的軌跡的方程.(Ⅱ)要使得以MP、MQ為鄰邊的平行四邊形是菱形,只需即可.設(shè),則,,由得移項(xiàng)用平方差公式得 ①
設(shè)直線的方程為,則,,故①式變形為,然后用韋達(dá)定理可得一個(gè)與的關(guān)系式:,由此關(guān)系式可看出,這樣的點(diǎn)存在,并由可求出的取值范圍.
另外,由于,所以也可利用得:.
試題解析:(Ⅰ)由,且知,動(dòng)點(diǎn)G的軌跡是以,為焦點(diǎn)的橢圓,設(shè)該橢圓的標(biāo)準(zhǔn)方程為,,
由題知,,則,
故動(dòng)點(diǎn)G的軌跡的方程是. 4分
(Ⅱ)假設(shè)在線段上存在,使得以MP、MQ為鄰邊的平行四邊形是菱形.直線l與軸不垂直,設(shè)直線的方程為,,
由可得.
, . 6分
,,,其中.
由于MP,MQ為鄰邊的平行四邊形是菱形,
所以,則有, 8分
從而,
所以,
又,則,,
故上式變形為, 10分
將代入上式,得,
即,所以,可知.
故實(shí)數(shù)m的取值范圍是. ..13分
考點(diǎn):1、橢圓的方程;2、直線與圓錐曲線的關(guān)系.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(1)求點(diǎn)G的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(1)求點(diǎn)G的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(08年成都七中二模理) 已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(1)求點(diǎn)G的軌跡C的方程;
(2)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知圓上的動(dòng)點(diǎn),點(diǎn)Q在NP上,點(diǎn)G在MP上,且滿足.
(I)求點(diǎn)G的軌跡C的方程;
(II)過點(diǎn)(2,0)作直線,與曲線C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),設(shè) 是否存在這樣的直線,使四邊形OASB的對(duì)角線相等(即|OS|=|AB|)?若存在,求出直線的方程;若不存在,試說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com