【題目】某校為緩解高三學(xué)生的高考?jí)毫,?jīng)常舉行一些心理素質(zhì)綜合能力訓(xùn)練活動(dòng),經(jīng)過一段時(shí)間的訓(xùn)練后從該年級(jí)800名學(xué)生中隨機(jī)抽取100名學(xué)生進(jìn)行測試,并將其成績分為、、、、五個(gè)等級(jí),統(tǒng)計(jì)數(shù)據(jù)如圖所示(視頻率為概率),根據(jù)以上抽樣調(diào)查數(shù)據(jù),回答下列問題:
(1)試估算該校高三年級(jí)學(xué)生獲得成績?yōu)?/span>的人數(shù);
(2)若等級(jí)、、、、分別對(duì)應(yīng)100分、90分、80分、70分、60分,學(xué)校要求平均分達(dá)90分以上為“考前心理穩(wěn)定整體過關(guān)”,請(qǐng)問該校高三年級(jí)目前學(xué)生的“考前心理穩(wěn)定整體”是否過關(guān)?
(3)為了解心理健康狀態(tài)穩(wěn)定學(xué)生的特點(diǎn),現(xiàn)從、兩種級(jí)別中,用分層抽樣的方法抽取11個(gè)學(xué)生樣本,再從中任意選取3個(gè)學(xué)生樣本分析,求這3個(gè)樣本為級(jí)的個(gè)數(shù)的分布列與數(shù)學(xué)期望.
【答案】(1)448;(2)該校高三年級(jí)目前學(xué)生的“考前心理穩(wěn)定整體”已過關(guān);(3)見解析.
【解析】試題分析:
(1)由頻率分布直方圖估算該校高三年級(jí)學(xué)生獲得成績?yōu)?/span>的人數(shù)為448;
(2)計(jì)算平均分可得該校高三年級(jí)目前學(xué)生的“考前心理穩(wěn)定整體”已過關(guān).
(3) 的可能值為0,1,2,3.由超幾何分布的概率寫出分布列,求得數(shù)學(xué)期望為 .
試題解析:
(1)從條形圖中可知這100人中,有56名學(xué)生成績等級(jí)為,
所以可以估計(jì)該校學(xué)生獲得成績等級(jí)為的概率為,
則該校高三年級(jí)學(xué)生獲得成績?yōu)?/span>的人數(shù)約有.
(2)這100名學(xué)生成績的平均分為 ,
因?yàn)?/span>,所以該校高三年級(jí)目前學(xué)生的“考前心理穩(wěn)定整體”已過關(guān).
(3)由題可知用分層抽樣的方法抽取11個(gè)學(xué)生樣本,其中級(jí)4個(gè), 級(jí)7個(gè),從而任意選取3個(gè),這3個(gè)為級(jí)的個(gè)數(shù)的可能值為0,1,2,3.
則, ,
, .
因此可得的分布列為:
則 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】有一座大橋既是交通擁擠地段,又是事故多發(fā)地段,為了保證安全,交通部門規(guī)定:大橋上的車距d(m)與車速v(km/h)和車身長l(m)的關(guān)系滿足:d=kv2l+ l(k為正的常數(shù)),假定大橋上的車的車身長都為4m,當(dāng)車速為60km/h時(shí),車距為2.66個(gè)車身長.
(1)寫出車距d關(guān)于車速v的函數(shù)關(guān)系式;
(2)應(yīng)規(guī)定怎樣的車速,才能使大橋上每小時(shí)通過的車輛最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程是(為參數(shù)),以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,曲線的極坐標(biāo)方程是.
(Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程;
(Ⅱ)求直線被曲線的截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表一:男生
表二:女生
(1)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測評(píng)等級(jí)為合格的概率;
(2)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考公式: ,其中.
參考數(shù)據(jù):
0.10 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)試討論函數(shù)的單調(diào)性;
(2)設(shè),記,當(dāng)時(shí),若方程有兩個(gè)不相等的實(shí)根, ,證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)已知橢圓的左焦點(diǎn)為,右頂點(diǎn)為,點(diǎn)的坐標(biāo)為,的面積為.
(I)求橢圓的離心率;
(II)設(shè)點(diǎn)在線段上,,延長線段與橢圓交于點(diǎn),點(diǎn),在軸上,,且直線與直線間的距離為,四邊形的面積為.
(i)求直線的斜率;
(ii)求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線(),焦點(diǎn)到準(zhǔn)線的距離為,過點(diǎn)作直線交拋物線于點(diǎn)(點(diǎn)在第一象限).
(Ⅰ)若點(diǎn)焦點(diǎn)重合,且弦長,求直線的方程;
(Ⅱ)若點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,直線交x軸于點(diǎn),且,求證:點(diǎn)B的坐標(biāo)是,并求點(diǎn)到直線的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】大學(xué)生趙敏利用寒假參加社會(huì)實(shí)踐,對(duì)機(jī)械銷售公司7月份至12月份銷售某種機(jī)械配件的銷售量及銷售單價(jià)進(jìn)行了調(diào)查,銷售單價(jià)和銷售量之間的一組數(shù)據(jù)如下表所示:
月份 | 7 | 8 | 9 | 10 | 11 | 12 |
銷售單價(jià)(元) | 9 | 9.5 | 10 | 10.5 | 11 | 8 |
銷售量(件) | 11 | 10 | 8 | 6 | 5 | 14 |
(1)根據(jù)7至11月份的數(shù)據(jù),求出關(guān)于的回歸直線方程;
(2)若由回歸直線方程得到的估計(jì)數(shù)據(jù)與剩下的檢驗(yàn)數(shù)據(jù)的誤差不超過0.5元,則認(rèn)為所得到的回歸直線方程是理想的,試問(1)中所得到的回歸直線方程是否理想?
(3)預(yù)計(jì)在今后的銷售中,銷售量與銷售單價(jià)仍然服從(1)中的關(guān)系,若該種機(jī)器配件的成本是2.5元/件,那么該配件的銷售單價(jià)應(yīng)定為多少元才能獲得最大利潤?(注:利潤=銷售收入-成本).
參考公式:回歸直線方程,其中,參考數(shù)據(jù): .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com