【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5].
(1)當a=﹣1時,求函數(shù)f(x)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù).

【答案】
(1)解: a=﹣1,f(x)=x2﹣2x+2=(x﹣1)2+1;

∵x∈[﹣5,5];

∴x=1時,f(x)取最小值1;

x=﹣5時,f(x)取最大值37;


(2)解:f(x)的對稱軸為x=﹣a;

∵f(x)在[﹣5,5]上是單調(diào)函數(shù);

∴﹣a≤﹣5,或﹣a≥5;

∴實數(shù)a的取值范圍為(﹣∞,﹣5]∪[5,+∞)


【解析】(1)a=﹣1時,配方得到f(x)=(x﹣1)2+1,從而可以看出x=1時f(x)取最小值,而x=﹣5時取最大值,這樣便可得出f(x)的最大值和最小值;(2)可以求出f(x)的對稱軸為x=﹣a,而f(x)在[﹣5,5]上是單調(diào)函數(shù),從而可以得出﹣a≤﹣5,或﹣a≥5,這樣便可得出實數(shù)a的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】若一個三位數(shù)的十位數(shù)字比個位數(shù)字和百位數(shù)字都大,則稱這個數(shù)為“傘數(shù)”.現(xiàn)從1,2,3,4,5,6這六個數(shù)字中任取3個數(shù),組成無重復(fù)數(shù)字的三位數(shù),其中“傘數(shù)”有(
A.120個
B.80個
C.40個
D.20個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知隨機變量x服從正態(tài)分布N(3,σ2),且P(x≤4)=0.84,則P(2<x<4)=(
A.0.84
B.0.68
C.0.32
D.0.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U=R,集合A={x|x<2},B={y|y=x2+1},則A∪UB=

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A={x|x2﹣2x﹣3>0},B={x|2m﹣1≤x≤m+3},若BA,則實數(shù)m的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)全集U={1,2,3,4,5,6},設(shè)集合P={1,2,3,4},Q={3,4,5},則P∩(UQ)=(
A.{1,2,3,4,6}
B.{1,2,3,4,5}
C.{1,2,5}
D.{1,2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)是定義在(﹣∞,0)上的可導(dǎo)函數(shù),其導(dǎo)函數(shù)為f′(x),且有3f(x)+xf′(x)>0,則
不等式(x+2015)3f(x+2015)+27f(﹣3)>0的解集(
A.(﹣2018,﹣2015)
B.(﹣∞,﹣2016)
C.(﹣2016,﹣2015)
D.(﹣∞,﹣2012)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)f(x)=﹣x3的圖象關(guān)于(
A.y軸對稱
B.直線y=﹣x對稱
C.坐標原點對稱
D.直線y=x對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,可以是奇函數(shù)的為(
A.f(x)=(x﹣a)|x|,a∈R
B.f(x)=x2+ax+1,a∈R
C.f(x)=log2(ax﹣1),a∈R
D.f(x)=ax+cosx,a∈R

查看答案和解析>>

同步練習冊答案