(本題滿分14分)
用數(shù)學(xué)歸納法證明:
見(jiàn)解析。
要抓住數(shù)學(xué)歸納法證明的兩步,第一步驗(yàn)證時(shí),左右兩邊相等;第二步的證明一定要用上歸納假設(shè),最后要總結(jié).
(1)當(dāng)時(shí),左邊,右邊左邊,∴等式成立.
(2)假設(shè)當(dāng)時(shí),等式成立,

則當(dāng)時(shí),

時(shí),等式成立.
由(1)、(2)可知,原等式對(duì)于任意成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明“當(dāng)n為正奇數(shù)時(shí),xnyn能被xy整除”的第二步
是(  ).
A.假使n=2k+1時(shí)正確,再推n=2k+3正確
B.假使n=2k-1時(shí)正確,再推n=2k+1正確
C.假使nk時(shí)正確,再推nk+1正確
D.假使nk(k≥1),再推nk+2時(shí)正確(以上k∈N)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為正整數(shù),試比較的大小 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明:“”,
從第步到第步時(shí),左邊應(yīng)加上          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明1+a+a2 在驗(yàn)證n=1成立時(shí),左邊計(jì)算所得結(jié)果為                      (     )
A. 1B. 1+aC.1+a+a2D.1+a+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)是定義在正整數(shù)集上的函數(shù),且滿足:“當(dāng)成立時(shí),總可推出成立”. 那么,下列命題總成立的是(   )
A.若成立,則成立;
B.若成立,則成立;
C.若成立,則當(dāng)時(shí),均有成立;
D.若成立,則當(dāng)時(shí),均有成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用數(shù)學(xué)歸納法證明不等式,且時(shí),第一步應(yīng)證明下述哪個(gè)不等式成立(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

用數(shù)學(xué)歸納法證明“”時(shí),從 到,等式的左邊需要增乘的代數(shù)式是__________ ;

查看答案和解析>>

同步練習(xí)冊(cè)答案