【題目】已知函數(shù)f(x),(x∈R)上任一點(diǎn)(x0 , y0)的切線方程為y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0),那么函數(shù)f(x)的單調(diào)遞減區(qū)間是( )
A.[﹣1,+∞)
B.(﹣∞,2]
C.(﹣∞,﹣1)和(1,2)
D.[2,+∞)
【答案】C
【解析】解:因?yàn)楹瘮?shù)f(x),(x∈R)上任一點(diǎn)(x0 , y0)的切線方程為y﹣y0=(x0﹣2)(x02﹣1)(x﹣x0), 即函數(shù)在任一點(diǎn)(x0 , y0)的切線斜率為k=(x0﹣2)(x02﹣1),即知任一點(diǎn)的導(dǎo)數(shù)為f′(x)=(x﹣2)(x2﹣1).
由f′(x)=(x﹣2)(x2﹣1)<0,得x<﹣1或1<x<2,即函數(shù)f(x)的單調(diào)遞減區(qū)間是(﹣∞,﹣1)和(1,2).
故選C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正實(shí)數(shù)a,b滿足ab=ba , 且0<a<1,則a,b的大小關(guān)系是( )
A.a>b
B.a=b
C.a<b
D.不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1 , 則異面直線BA1與AC1所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直四棱柱ABCD﹣A1B1C1D1中,底面ABCD為菱形,且∠BAD=60°,A1A=AB,E為BB1延長線上的一點(diǎn),D1E⊥面D1AC.設(shè)AB=2.
(1)求二面角E﹣AC﹣D1的大;
(2)在D1E上是否存在一點(diǎn)P,使A1P∥面EAC?若存在,求D1P:PE的值;不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體中,P是側(cè)棱CC1上的一點(diǎn),CP=m
(1)試確定m,使直線AP與平面BDD1B1所成角的正切值為 ;
(2)在線段A1C1上是否存在一個(gè)定點(diǎn)Q,使得對(duì)任意的m,D1Q在平面APD1上的射影垂直于AP,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx﹣ ax2﹣2x(a<0)
(1)若函數(shù)f(x)在定義域內(nèi)單調(diào)遞增,求a的取值范圍;
(2)若a=﹣ 且關(guān)于x的方程f(x)=﹣ x+b在[1,4]上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ .且f(1)=5.
(1)求a的值;
(2)判斷函數(shù)f(x)的奇偶性;
(3)判斷函數(shù)f(x)在(2,+∞)上的單調(diào)性并用定義證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) , (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間,并判斷是否有極值;
(Ⅱ)若對(duì)任意的x>1,恒有l(wèi)n(x﹣1)+k+1≤kx成立,求k的取值范圍;
(Ⅲ)證明: (n∈N+ , n≥2).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com