已知函數(shù)處取得極值-2.
(1)求函數(shù)的解析式;
(2)求曲線在點處的切線方程.

(1);(2).

解析試題分析:(1)由題知,在處取得極值-2,可得,,得到關于的方程組,解出后可得的解析式;(2)曲線在處的切線斜率為,又過點,由直線的點斜式方程可得切線方程.
解:(1),                        1分
依題意有,,即 ,             3分
解得,                                       5分
.                                      6分
(2),
,又 ,           9分
故曲線在點處的切線方程為,
                                         12分
考點:求函數(shù)的極值,求曲線的切線方程.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),其中,且曲線在點處的切線垂直于.
(1)求的值;
(2)求函數(shù)的單調區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

函數(shù)
(1)a=0時,求f(x)最小值;
(2)若f(x)在是單調減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)的圖象過點P(0,2),且在點M(-1,)處的切線方程。
(1)求函數(shù)的解析式;   
(2)求函數(shù)的圖像有三個交點,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x2-alnx(a∈R).
(1)若函數(shù)f(x)的圖象在x=2處的切線方程為y=x+b,求a,b的值;
(2)若函數(shù)f(x)在(1,+∞)上為增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù),
(1)若函數(shù)f(x)在R上單調遞增,求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)在區(qū)間(-1,1)上單調遞減,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,長度為3的線段AB的端點A、B分別在軸上滑動,點M在線段AB上,且,
(1)若點M的軌跡為曲線C,求其方程;
(2)過點的直線與曲線C交于不同兩點E、F,N是曲線上不同于E、F的動點,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)處取極值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設函數(shù).
(1)當時,求函數(shù)在區(qū)間內的最大值;
(2)當時,方程有唯一實數(shù)解,求正數(shù)的值.

查看答案和解析>>

同步練習冊答案