已知點(diǎn)P1(x1,-6), P2(3,y2), 延長(zhǎng)P2P1到點(diǎn),    使, 則x1=________, y2=_________
答案:-15/8;0
解析:

解: 因?yàn)?img align="absmiddle" border="0" src="http://thumb.zyjl.cn/pic7/pages/6006/0413/0017/02a9f3c085e8ea51655ae99d29c84efc/C/C.htm32.gif" width="107" height="49">


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(x1,y1)是直線l:f(x,y)=0上的一點(diǎn),P2(x2,y2)是直線l外的一點(diǎn),則f(x,y)-f(x1,y1)-f(x2,y2)=0方程表示的直線l的位置關(guān)系是
平行
平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)P1(x0,y0)為雙曲線
x2
3b2
-
y2
b2
=1(b>0,b為常數(shù))
上任意一點(diǎn),F(xiàn)2為雙曲線的右焦點(diǎn),過(guò)P1作右準(zhǔn)線的垂線,垂足為A,連接F2A并延長(zhǎng)交y軸于點(diǎn)P2
(1)求線段P1P2的中點(diǎn)P的軌跡E的方程;
(2)是否存在過(guò)點(diǎn)F2的直線l,使直線l與(1)中軌跡在y軸右側(cè)交于R1、R2兩不同點(diǎn),且滿足
OR1
OR2
=4b2
,(O為坐標(biāo)原點(diǎn)),若存在,求直線l的方程;若不存在,請(qǐng)說(shuō)明理由;
(3)設(shè)(1)中軌跡E與x軸交于B、D兩點(diǎn),在E上任取一點(diǎn)Q(x1,y1)(y1≠0),直線QB、QD分別交y軸于M、N點(diǎn),求證:以MN為直徑的圓恒過(guò)兩個(gè)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•楊浦區(qū)一模)設(shè)數(shù)列{xn}滿足xn≠1且(n∈N*),前n項(xiàng)和為Sn.已知點(diǎn)p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直線y=kx+b上(其中常數(shù)b,k且k≠1,b≠0),又yn=log
12
 xn
(1)求證:數(shù)列{xn]是等比數(shù)列;
(2)若yn=18-3n,求實(shí)數(shù)k,b的值;
(3)如果存在t、s∈N*,s≠t使得點(diǎn)(t,yt)和點(diǎn)(s,yt)都在直線y=2x+1上.問(wèn)是否存在正整數(shù)M,當(dāng)n>M時(shí),xn>1恒成立?若存在,求出M的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008高考數(shù)學(xué)概念方法題型易誤點(diǎn)技巧總結(jié)——直線和圓 題型:022

已知點(diǎn)P1(x1,y1)是直線l:f(x,y)=0上一點(diǎn),P2(x2,y2)是直線l外一點(diǎn),則方程f(x,y)+f(x1,y1)+f(x2,y2)=0所表示的直線與l的關(guān)系是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案