已知y=f(x)在定義域R上是減函數(shù),且f(1-a)<f(2a-1),則a的取值范圍是
(-∞,2).
(-∞,2).
分析:根據(jù)函數(shù)y=f(x)在定義域R上是減函數(shù),則能推出不等式1-a>2a-1,從而求出a的取值范圍.
解答:解:因為y=f(x)在定義域R上是減函數(shù),且f(1-a)<f(2a-1),
使用由減函數(shù)的性質可知1-a>2a-1,解得a<2.所以a的取值范圍是(-∞,2).
故答案為:(-∞,2).
點評:本題考查了函數(shù)的單調性的應用,屬于基礎題型.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點F(a,0)(a>0),直線l:x=-a,點E是l上的動點,過點E垂直于y軸的直線與線段EF的垂直平分線交于點P.
(1)求點P的軌跡M的方程;
(2)若曲線M上在x軸上方的一點A的橫坐標為a,過點A作兩條傾斜角互補的直線,與曲線M的另一個交點分別為B、C,求證:直線BC的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=ax+數(shù)學公式-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年遼寧省鞍山一中高考數(shù)學二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年江蘇省南通市啟東中學高三(下)5月月考數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習冊答案