(2010•南充一模)將函數(shù)y=f(x)•cosx的圖象按向量
a
=(
π
4
,1)
平移,得到函數(shù)y=2sin2x的圖象,那么函數(shù)f(x)可以是(  )
分析:函數(shù)y=2sin2x的圖象按向量
b
=(-
π
4
,-1)
平移,得到函數(shù)y=f(x)•cosx的圖象,即可得出結(jié)論.
解答:解:函數(shù)y=2sin2x的圖象按向量
b
=(-
π
4
,-1)
平移,得到y(tǒng)=1-cos2(x+
π
4
)-1=sin2x=2sinxcosx
∴函數(shù)f(x)可以是2sinx
故選B.
點(diǎn)評:本題考查三角函數(shù)的圖象變換,考查學(xué)生分析解決問題的能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南充一模)在直角坐標(biāo)平面上,向量
OA
=(1,3)
OB
=(-3,1)
(O為原點(diǎn))在直線l上的射影長度相等,且直線l的傾斜角為銳角,則l的斜率等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南充一模)函數(shù)f(x)=ax-1+logax(a>0且a≠1),在[1,2]上的最大值與最小值之和是a,則a的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南充一模)已知a,b,c都是正數(shù),且a+2b+c=1,則
1
a
+
1
b
+
1
c
的最小值是
6+4
2
6+4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南充一模)已知兩異面直線a,b所成的角為
π
3
,直線l分別與a,b所成的角都是θ,則θ的取值范圍是
[
π
6
,
π
2
]
[
π
6
,
π
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•南充一模)已知函數(shù)f(x)圖象的兩條對稱軸x=0和x=1,且在x∈[-1,0]上f(x)單調(diào)遞增,設(shè)a=f(3),b=f(
2
)
,c=f(2),則a,b,c的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案