(本題12分)已知橢圓的長(zhǎng)半軸長(zhǎng)為,且點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)過橢圓右焦點(diǎn)的直線交橢圓于兩點(diǎn),若,求直線方程.
解:(Ⅰ)由題意: .所求橢圓方程為.
又點(diǎn)在橢圓上,可得.所求橢圓方程為.(4分)
(Ⅱ)由(Ⅰ)知,又,所以,橢圓右焦點(diǎn)為.
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052209175287505984/SYS201205220919108437579941_DA.files/image010.png">.若直線的斜率不存在,則直線的方程為.
直線交橢圓于兩點(diǎn), ,不合題意.(6分)
若直線的斜率存在,設(shè)斜率為,則直線的方程為.
由可得.
由于直線過橢圓右焦點(diǎn),可知.
設(shè),則,(8分)
.
所以.
由,即,可得.(11分)
所以直線的方程為. (12分)
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013屆河北省高二下學(xué)期一調(diào)考試?yán)砜茢?shù)學(xué) 題型:解答題
(本題12分)已知圓C的圓心為C(m,0),(m<3),半徑為,圓C與橢圓E: 有一個(gè)公共點(diǎn)A(3,1),分別是橢圓的左、右焦點(diǎn);
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若點(diǎn)P的坐標(biāo)為(4,4),試探究斜率為k的直線與圓C能否相切,若能,求出橢
圓E和直線的方程,若不能,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com