的展開(kāi)式中x3的系數(shù)為15,則實(shí)數(shù)m的值為   
【答案】分析:由題意只要在二項(xiàng)展開(kāi)式的通項(xiàng)中,令6-r=3可求r,代入通項(xiàng)中可求m
解答:解:二項(xiàng)展開(kāi)式的通項(xiàng)為,

此時(shí)T3=(-1)rm6-r=m4C62=15
∴m4=1
∴m=±1.
故答案為:±1
點(diǎn)評(píng):本題主要考查了利用二項(xiàng)展開(kāi)式的通項(xiàng)求解展開(kāi)式的指定項(xiàng)的系數(shù),屬于公式的基本應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若(1+x)n的展開(kāi)式中,x3的系數(shù)是x的系數(shù)的7倍,求n;
(2)若(ax+1)7(a≠0)的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;
(3)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:學(xué)習(xí)周報(bào) 數(shù)學(xué) 北師大課標(biāo)高二版(選修2-3) 2009-2010學(xué)年 第44期 總第200期 北師大課標(biāo) 題型:044

(1)若(1+x)n的展開(kāi)式中x3的系數(shù)是x的系數(shù)的7倍,求n的值;

(2)已知(ax+1)7(a≠0)的展開(kāi)式中x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(1)若(1+x)n的展開(kāi)式中,x3的系數(shù)是x的系數(shù)的7倍,求n;
(2)若(ax+1)7(a≠0)的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;
(3)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(1)若(1+x)n的展開(kāi)式中,x3的系數(shù)是x的系數(shù)的7倍,求n;
(2)若(ax+1)7(a≠0)的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;
(3)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年高三(上)數(shù)學(xué)寒假作業(yè)13(選修系列2)(解析版) 題型:解答題

(1)若(1+x)n的展開(kāi)式中,x3的系數(shù)是x的系數(shù)的7倍,求n;
(2)若(ax+1)7(a≠0)的展開(kāi)式中,x3的系數(shù)是x2的系數(shù)與x4的系數(shù)的等差中項(xiàng),求a;
(3)已知(2x+xlgx8的展開(kāi)式中,二項(xiàng)式系數(shù)最大的項(xiàng)的值等于1120,求x.

查看答案和解析>>

同步練習(xí)冊(cè)答案