命題“?x∈R,有x2+1≥x”的否定是______.
∵原命題“?x∈R,有x2+1≥x”
∴命題“?x∈R,有x2+1≥x”的否定是:
?x∈R,使x2+1<x.
故答案為:?x∈R,使x2+1<x.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

15、給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論的序號(hào)是
①④
(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2010•馬鞍山模擬)給出下列四個(gè)結(jié)論:
①命題''?x∈R,x2-x>0''的否定是''?x∈R,x2-x≤0''
②“若am2<bm2,則a<b”的逆命題為真;
③已知直線l1:ax+2y-1=0,l1:x+by+2=0,則l1⊥l2的充要條件是
ab
=-2
;
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x)且x>0時(shí),f'(x)>0,g'(x)>0,則x<0時(shí),f'(x)>g'(x).
其中正確結(jié)論的序號(hào)是
①④
①④
(填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年江蘇省泰州市靖江市高三(上)期中數(shù)學(xué)試卷(解析版) 題型:填空題

給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論的序號(hào)是    (填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕頭市潮陽(yáng)實(shí)驗(yàn)學(xué)校高三(上)第二周周練數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論的序號(hào)是    (填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省杭州市富陽(yáng)二中高三(下)3月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個(gè)結(jié)論:
①命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”;
②“若am2<bm2,則a<b”的逆命題為真;
③函數(shù)f(x)=x-sinx(x∈R)有3個(gè)零點(diǎn);
④對(duì)于任意實(shí)數(shù)x,有f(-x)=-f(x),g(-x)=g(x),且x>0時(shí),f′(x)>0,g′(x)>0,則x<0時(shí),f′(x)>g′(x).
其中正確結(jié)論的序號(hào)是    (填上所有正確結(jié)論的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案