已知F1、F2分別為橢圓(a>b>0)的左右焦點(diǎn),經(jīng)過橢圓上第二象限內(nèi)任意一點(diǎn)P的切線為l,過原點(diǎn)O作OM∥l交F2P于點(diǎn)M,則|MP|與a、b的關(guān)系是( )
A.|MP|=a
B.|MP|>a
C.|MP|=b
D.|MP|<b
【答案】分析:設(shè)橢圓的左端點(diǎn)為A,考察特殊情形,當(dāng)點(diǎn)P→A時(shí),切線l→直線x=-a,此時(shí)|PM|→AO,即|PM|→a,對照選項(xiàng)得出答案.
解答:解:考察特殊情形,設(shè)橢圓的左端點(diǎn)為A,
當(dāng)點(diǎn)P→A時(shí),
切線l→直線x=-a,
此時(shí)|PM|→AO,
即|PM|→a,
特別地,當(dāng)P與A重合時(shí),|PM|=a.
對照選項(xiàng),選A.
故選A.
點(diǎn)評:本小題主要考查橢圓的簡單性質(zhì)、橢圓的標(biāo)準(zhǔn)方程等基礎(chǔ)知識,考查數(shù)形結(jié)合思想、極限思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓
x2
25
+
y2
9
=1的左、右焦點(diǎn),P為橢圓上一點(diǎn),Q是y軸上的一個(gè)動點(diǎn),若|
PF1
|-|
PF2
|=4,則
PQ
•(
PF1
-
PF2
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為橢圓
x2
3
+
y2
2
=1
的左、右焦點(diǎn),直線l1過點(diǎn)F1且垂直于橢圓的長軸,動直線l2垂直于直線l1,垂足為D,線段DF2的垂直平分線交l2于點(diǎn)M.
(Ⅰ)求動點(diǎn)M的軌跡C的方程;
(Ⅱ)過點(diǎn)F1作直線交曲線C于兩個(gè)不同的點(diǎn)P和Q,設(shè)
F1P
F1Q
,若λ∈[2,3],求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓
x2
16
+
y2
9
=1
的左、右焦點(diǎn),點(diǎn)P在橢圓上,若P、F1、F2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則△PF1F2的面積為
9
7
4
9
7
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2分別為橢圓的左、右焦點(diǎn),橢圓上點(diǎn)M的橫坐標(biāo)等于右焦點(diǎn)的橫坐標(biāo),其縱坐標(biāo)等于短半軸長的
2
3
,則橢圓的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1,F(xiàn)2分別為雙曲線x2-
y2
4
=1
的左、右焦點(diǎn),P是雙曲線上的動點(diǎn),過F1作∠F1PF2的平分線的垂線,垂足為H,則點(diǎn)H的軌跡為(  )

查看答案和解析>>

同步練習(xí)冊答案