已知圓x2+y2=25。求:

(1)過點A(4,-3)的切線方程;

(2)過點B(-5,2)的切線方程。

答案:
解析:

解:(1)∵點A(4,-3)在圓x2+y2=25上。

∴過點A的切線方程為:

4x-3y-25=0。

(2)當(dāng)過點B(-5,2)的切線的斜率存在時,設(shè)所求切線方程為y-2=k(x+5)。

kxy+5k+2=0

。

∴此時切線方程為:21x-20y+145=0。

當(dāng)過點B(-5,2)的切線斜率不存在時,結(jié)合圖形可知x=-5,也是切線方程。

綜上所述,所求切線方程為:

21x-20y+145=0或x=-5。


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點為C,并且與坐標軸相交于點A、B,則當(dāng)線段AB最小時,則直線AB方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標原點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓x2+y2-2(m-1)x+2(m -1)y+2 m 2-6 m+4=0過坐標原點,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點為C,并且與坐標軸相交于點A、B,則當(dāng)線段AB最小時,則直線AB方程為(  )
A.x+y=2B.2x+y=
10
C.
2
x+y=
6
D.3x+y=2
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市閔行區(qū)七寶中學(xué)高三(下)摸底數(shù)學(xué)試卷(解析版) 題型:選擇題

已知圓x2+y2=2,直線l與圓O相切于第一象限,切點為C,并且與坐標軸相交于點A、B,則當(dāng)線段AB最小時,則直線AB方程為( )
A.x+y=2
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案