18.(1)已知集合A={x|3<x<7},B={x|2<x<10},求A∪B,A∩B,∁RA
(2)計算下列各式
①$2{log_5}25+{10^{lg\sqrt{3}}}+ln{e^{({1-\sqrt{3}})}}+{({\sqrt{2}-1})^0}$
②(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)

分析 (1)根據(jù)集合的交并補的定義計算即可,
(2)①根據(jù)對數(shù)的運算性質(zhì)計算即可,
②根據(jù)冪的運算性質(zhì)計算即可.

解答 解(1):∵A={x|3<x<7},B={x|2<x<10},
∴A∪B={x|2<x<10},A∩B={x|3<x<7},∁RA={x|x≤3或x≥7}
(2)①$2{log_5}25+{10^{lg\sqrt{3}}}+ln{e^{({1-\sqrt{3}})}}+{({\sqrt{2}-1})^0}$=$2×2+\sqrt{3}+({1-\sqrt{3}})+1$=$4+\sqrt{3}+1-\sqrt{3}+1$=6,
②$(2{a^{\frac{2}{3}}}{b^{\frac{1}{2}}})(-6{a^{\frac{1}{2}}}{b^{\frac{1}{3}}})÷(-3{a^{\frac{1}{6}}}{b^{\frac{5}{6}}})$=$2×(-6)÷(-3){a^{\frac{2}{3}+\frac{1}{2}-\frac{1}{6}}}{b^{\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}}$=4ab0=4a.

點評 本題考查了集合的交并補的運算,對數(shù)和冪的運算性質(zhì),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=$\frac{x+1}{x}$的單調(diào)遞減區(qū)間為(-∞,0),(0,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(x)是R上的奇函數(shù),且對任意實數(shù)x滿足f(x)+f(x+$\frac{3}{2}$)=0,若f(1)>1,f(2)=a,則實數(shù)a的取值范圍是a<-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.在平面直角坐標系xOy中,點A(1,0),B(4,0),若直線x-y+m=0上存在點P,使得2PA=PB,則實數(shù)m的取值范圍是[-2$\sqrt{2}$,2$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知指數(shù)函數(shù)f(x)=ax(a>0,且a≠1)的圖象經(jīng)過點(3,8),則f(1)=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)$f(x)=\frac{1}{{\sqrt{ln(5-2x)}}}+\sqrt{{e^x}-1}$的定義域為( 。
A.[0,+∞)B.(-∞,2]C.[0,2]D.[0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{lnx}{x+1}$.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若x>0且x≠1,f(x)-$\frac{t}{x}>\frac{lnx}{x-1}$.
(i)求實數(shù)t的最大值;
(ii)證明不等式:lnn<$\sum_{i=1}^n{(\frac{1}{i})}-\frac{1}{2}-\frac{1}{2n}$(n∈N*且n≥2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設數(shù)列{an}滿足a1=2,an+1=2-$\frac{1}{{a}_{n}}$(n∈N*),那么a2是( 。
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設點P是曲線y=x3-$\sqrt{3}$x+$\frac{2}{3}$上的任意一點,在P點處切線傾斜角a的取值范圍.

查看答案和解析>>

同步練習冊答案