19.設(shè)函數(shù)f(x)=|2x-1|,實(shí)數(shù)a<b,且f(a)=f(b),則a+b的取值范圍是( 。
A.(0,1)B.(-∞,0)C.(0,+∞)D.(-1,1)

分析 將函數(shù)解析式化為分段函數(shù)的形式,進(jìn)而根據(jù)實(shí)數(shù)a<b,且f(a)=f(b),結(jié)合指數(shù)函數(shù)的圖象和性質(zhì),分類討論,可得a+b的取值范圍.

解答 解:∵f(x)=|2x-1|=$\left\{\begin{array}{l}1-{2}^{x},x≤0\\{2}^{x}-1,x>0\end{array}\right.$,
若a<b≤0,由f(a)=f(b)得1-2a=1-2b,得a=b,與a<b矛盾;
若0<a<b,由f(a)=f(b)得2a-1=2b-1,得a=b,與a<b矛盾;
若a<0<b,由f(a)=f(b)得1-2a=2b-1,得2a+2b=2,
而2a+2b>2$\sqrt{{2}^{a}•{2}^}$=2$\sqrt{{2}^{a+b}}$,
∴2a+b<1=20,
∴a+b<0,
故a+b的取值范圍是(-∞,0),
故選:B

點(diǎn)評 本題考查的知識點(diǎn)是分類函數(shù)的應(yīng)用,指數(shù)函數(shù)的圖象和性質(zhì),是函數(shù)圖象和性質(zhì)的綜合應(yīng)用,難度中檔.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)f(x)是定義在R上的增函數(shù),其導(dǎo)函數(shù)為f′(x),且滿足$\frac{f(x)}{f′(x)}$+x<1,下面不等式正確的是( 。
A.f(x2)<f(x-1)B.(x-1)f(x)<xf(x+1)C.f(x)>x-1D.f(x)<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.給定下列命題:
①“若k>0,則方程x2+2x-k=0有實(shí)數(shù)根”的逆否命題;
②“若A=B,則sinA=sinB”的逆命題;
③“若$\frac{1}{a}<\frac{1}<0,則\;ab<b$2”的逆否命題;
④“若xy=0,則x,y中至少有一個(gè)為零”的否命題.
⑤“若$\frac{a}>\frac{a},則\;a<b<0$”的逆命題.
其中真命題的序號是①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知A,B,C,D是球面上的四個(gè)點(diǎn),其中A,B,C在同一圓周上,若D不在A,B,C所在的圓周上,則從這四點(diǎn)中的任意兩點(diǎn)的連線中取2條,這兩條直線是異面直線的概率等于( 。
A.$\frac{1}{6}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)${S_n}={n^2}+2n$時(shí),a4+a5=(  )
A.11B.20C.33D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)等比數(shù)列{an}的前n項(xiàng)和Sn,已知${a_3}=\frac{1}{8}$,且${S_2}+\frac{1}{16},{S_3},{S_4}$成等差數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)${b_n}={a_n}{log_{\frac{1}{2}}}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.給出下列四個(gè)命題.
①命題p:對任意x∈R,sinx≤1的否定¬p:存在x∈R,sinx>1;
②“k=1”是“函數(shù)y=cos2kx-sin2kx的最小正周期為π”的充要條件;
③若$\overrightarrow{a}$與$\overrightarrow$+$\overrightarrow{c}$都是非零向量,則“$\overrightarrow{a}$+$\overrightarrow$+$\overrightarrow{c}$=$\overrightarrow{0}$”是“$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$)”的必要不充分條件;
④命題“若一個(gè)整數(shù)能被6整除,則它能被3整除”的否命題是假命題.其中真命題的序號是①.(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.下面四個(gè)結(jié)論:
①y=sin|x|的圖象關(guān)于原點(diǎn)對稱;
②y=sin(|x|+2)的圖象是把y=sin|x|的圖象向左平移2個(gè)單位而得到的;
③y=sin(x+2)的圖象是把y=sinx的圖象向左平移2個(gè)單位而得到的;
④y=sin(x+2)的圖象是由y=sin(x+2)(x≥0)的圖象及y=-sin(x-2)(x<0)的圖象組成的.
其中,正確的結(jié)論有③(請把正確結(jié)論的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F為拋物線y2=4x的焦點(diǎn),點(diǎn)A,B在該拋物線上,$\overrightarrow{OA}$$•\overrightarrow{OB}$=0(其中O為坐標(biāo)原點(diǎn)),則△ABO與△BFO面積之差的最小值是( 。
A.4B.8C.8$\sqrt{3}$D.16$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊答案