如圖,l1、l2、l3是同一平面內的三條平行直線,l1與l2間的距離是1,l2與l3間的距離是2,正三角形ABC的三頂點分別在l1、l2、l3上,則△ABC的邊長是( )

A.
B.
C.
D.
【答案】分析:由題意可知,正三角形ABC的三頂點分別在l1、l2、l3上,說明三邊長度相等,需要用解析法來解,即建立適當?shù)闹苯亲鴺讼,設點的坐標,利用邊長相等來逐一驗證即可得到正確答案.
解答:解:過點C作l2的垂線l4,以l2、l4為x軸、y軸建立平面直角坐標系.
設A(a,1)、B(b,0)、C(0,-2),由AB=BC=AC知
(a-b)2+1=b2+4=a2+9=邊長2,檢驗A:(a-b)2+1=b2+4=a2+9=12,無解;
檢驗B:(a-b)2+1=b2+4=a2+9=,無解;
檢驗D:(a-b)2+1=b2+4=a2+9=,正確.
故選D.
點評:本題是把關題.在基礎中考能力,在綜合中、在應用中、在新型題中考能力全占全了.是一道精彩的好題.區(qū)分度較。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網如圖,直線l1:y=kx(k>0)與直線l2:y=-kx之間的陰影區(qū)域(不含邊界)記為W,其左半部分記為W1,右半部分記為W2
(Ⅰ)分別用不等式組表示W1和W2
(Ⅱ)若區(qū)域W中的動點P(x,y)到l1,l2的距離之積等于d2,求點P的軌跡C的方程;
(Ⅲ)設不過原點O的直線l與(Ⅱ)中的曲線C相交于M1,M2兩點,且與l1,l2分別交于M3,M4兩點.求證△OM1M2的重心與△OM3M4的重心重合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=3x2-3x直線l1:x=2和l2:y=3tx,其中t為常數(shù)且0<<1.直線l2與函數(shù)f(x)的圖象以及直線l1、l2與函數(shù)f(x)的圖象圍成的封閉圖形如圖中陰影所示,設這兩個陰影區(qū)域的面積之和為S(t).
(1)求函數(shù)S(t)的解析式;
(2)若函數(shù)L(t)=S(t)+6t-2,判斷L(t)是否存在極值,若存在,求出極值,若不存在,說明理由;
(3)定義函數(shù)h(x)=S(x),x∈R若過點A(1,m)(m≠4)可作曲線y=h(x)(x∈R)的三條切線,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:高考總復習全解 數(shù)學 一輪復習·必修課程。ㄈ私虒嶒灠妫版 人教實驗版 B版 題型:047

如圖,l1l2,ll1=A,ll2=B,求證:直線l、l1、l2共面.

查看答案和解析>>

科目:高中數(shù)學 來源:高考總復習全解 數(shù)學 一輪復習·必修課程。ㄈ私虒嶒灠妫版 人教實驗版 B版 題型:047

如果三條平行線都與一條直線相交,那么這四條直線共面.

分析:可先由已知條件分別確定平面,然后再證它們是重合的.此題可用歸一法證明.

已知:如圖,l1l2l3,ll1=A,ll2=B,ll3=C.

求證:l1l2、l3l四條直線共面.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年普通高等學校招生全國統(tǒng)一考試江西卷理數(shù) 題型:013

如圖,半徑為1的半圓O與等邊三角形ABC夾在兩平行線,l1,l2之間ll1l與半圓相交于F,G兩點,與三角形ABC兩邊相交于E,D兩點,設弧的長為x(0<x<π),y=EB+BC+CD,若ll1平行移動到l2,則函數(shù)y=f(x)的圖像大致是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習冊答案