16.已知函數(shù)f(x)=$\frac{{{x^2}+2x+a}}{x}$,x∈[1,+∞).
(1)當(dāng)a=2時(shí),判斷并證明f(x)的單調(diào)性;
(2)當(dāng)a=2時(shí),求函數(shù)f(x)的值域.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,判斷函數(shù)的單調(diào)性即可;
(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值,從而求出函數(shù)的值域即可.

解答 解:(1)a=2時(shí),f(x)=$\frac{{x}^{2}+2x+2}{x}$=x+$\frac{2}{x}$+2,
f′(x)=1-$\frac{2}{{x}^{2}}$=$\frac{(x+\sqrt{2})(x-\sqrt{2})}{x}$,(x≥1),
令f′(x)>0,解得:x>$\sqrt{2}$,令f′(x)<0,解得:x<$\sqrt{2}$,
∴f(x)在[1,$\sqrt{2}$)遞減,在[$\sqrt{2}$,+∞)遞增;
(2)由(1)得:f(x)min=f($\sqrt{2}$)=2+2$\sqrt{2}$,
∴f(x)在[1,+∞)的值域是[2+2$\sqrt{2}$,+∞).

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的意義,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知,曲是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f (x)=x2+2x,若f(2-a2)>f(a),則實(shí)數(shù)a的取值范圍是(  )
A.(-∞,-1)∪(2,+∞)B.(-2,1)C.(-1,2)D.(一∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若數(shù)列{an}對(duì)任意的正整數(shù)n和m等式an+m2=an×an+2m都成立,則稱數(shù)列{an}為m階梯等比數(shù)列,若{an}是3階梯等比數(shù)列有a1=1,a4=2,則a10=8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2+x-2<0},B={x|x>-1},則集合A∩B等于(  )
A.{x|x>-2}B.B={x|-1<x<1}C.B={x|x<1}D.B={x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={x|ax2-3x+2=0,x∈R,a∈R}有兩個(gè)子集,則a=0或$\frac{9}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果a2>b2,那么下列不等式中正確的是( 。
A.a>0>bB.a>b>0C.|a|>|b|D.a>|b|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知定點(diǎn)A、B,且|AB|=10,動(dòng)點(diǎn)M滿足|MA|-|MB|=8,則|MA|的最小值為( 。
A.1B.4C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知F1、F2為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn),過F2做橢圓的弦AB.
(Ⅰ) 求證:△F1AB的周長(zhǎng)是常數(shù);
(Ⅱ) 若:△F1AB的周長(zhǎng)為16,且|AF1|、|F1F2|、|AF2|成等差數(shù)列,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知二次函數(shù)f(x)=x2+mx+n(m,n∈R)的兩個(gè)零點(diǎn)分別在(0,1)與(1,2)內(nèi),則(m+1)2+(n-2)2的取值范圍是[2,5].

查看答案和解析>>

同步練習(xí)冊(cè)答案