(本小題滿分14分)如圖,一簡單幾何體有五個頂點、、、、,它的一個面內(nèi)接于⊙,是⊙的直徑,四邊形為平行四邊形,平面.
(1)證明:平面平面;
(2)若,,,求該簡單幾何體的體積.
(1)見解析;(2)1.
【解析】第一問要證明面面垂直,關(guān)鍵是證明線面垂直,借助于面面垂直的判定定理得到結(jié)論即可即證平面
第二問中,將該幾何體的體積分解為兩個三棱錐的體積即可。注意合理分解為兩個特殊幾何體的體積是解決該試題的關(guān)鍵。
解: (1)證明:平面,平面,
. ………1分
是⊙的直徑,, ………2分
又 ………3分
平面, ………4分
平面 ………5分
又平面 ………6分
平面平面. ………7分
(2)設(shè)所求簡單幾何體的體積為,
平面
平面
平面
在中
………8分
方法一: 連,由(1),(2)知是三棱錐的高,是三棱錐的高
………9分
………11分
………13分
該簡單組合體的體積. ………14分
方法二:
平面,平面,
.
又由(1)知,
又
平面,
是四棱錐的高,且由(1),(2)證明易知四邊形為邊長為的正方形. ………10分
………11分
………12分
………13分
………14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達(dá)式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com