數(shù)列{}中,若,(n≥2).求證:(n∈N).

答案:
解析:

證 (1)當(dāng)n=1時(shí),,結(jié)論成立;(2)設(shè)當(dāng)n=k時(shí),結(jié)論成立,則>0,∴,即n=k+1時(shí),結(jié)論成立,∴n∈N時(shí)結(jié)論成立.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若對(duì)于n∈N*,總有
n
k=1
ak
=2n-1,則
n
k=1
ak2
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+
2
x
,數(shù)列{an}中,a1=a,an+1=f(an)(n∈N*).當(dāng)a取不同的值時(shí),得到不同的數(shù)列{an},如當(dāng)a=1時(shí),得到無窮數(shù)列1,3,
5
3
,
11
5
,…;當(dāng)a=2時(shí),得到常數(shù)列2,2,2,…;當(dāng)a=-2時(shí),得到有窮數(shù)列-2,0.
(Ⅰ)若a3=0,求a的值;
(Ⅱ)設(shè)數(shù)列{bn}滿足b1=-2,bn=f(bn+1)(n∈N*).求證:不論a取{bn}中的任何數(shù),都可以得到一個(gè)有窮數(shù)列{an};
(Ⅲ)若當(dāng)n≥2時(shí),都有
5
3
an<3
,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,若前n項(xiàng)和sn滿足sn=
32
an-3
,則該數(shù)列的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

大家知道,在數(shù)列{an}中,若an=n,則sn=1+2+3+…+n=
1
2
n2+
1
2
n
,若an=n2,則
sn=12+22+32+…+n2=
1
3
n3+
1
2
n2+
1
6
n
,于是,猜想:若an=n3,則sn=13+23+33+…+n3=an4+bn3+cn2+dn.
問:(1)這種猜想,你認(rèn)為正確嗎?
(2)不管猜想是否正確,這個(gè)結(jié)論是通過什么推理方法得到的?
(3)如果結(jié)論正確,請(qǐng)用數(shù)學(xué)歸納法給予證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案