六人按下列要求站一橫排,分別有多少種不同的站法?
(l)甲不站兩端;       
(2)甲、乙必須相鄰;
(3)甲、乙不相鄰;     
(4)甲、乙之間間隔兩人.
分析:(l)先在中間的4個位中選一個,排上甲,方法有4種;其余的人任意排,方法有
A
5
5
種,由分步計數(shù)原理可得;(2)把甲乙看成一個整體,這樣6個人變成了5個人,全排列共有
A
2
2
A
5
5
種站法.(3)先把甲乙二人單獨挑出來,把其余的4個人全排列,然后再把甲乙插入其余4人形成的5個空中,共有
A
4
4
A
2
5
種(4)先把甲乙排好,有
A
2
2
種方法,再從其余的4人中選出2人放到甲乙中間,方法有
A
2
4
=種.把排好的這4個人看做一個整體,再與其他的2個人進行排列,方法有
A
3
3
種.由分步計數(shù)原理可得答案.
解答:解:(l)先在中間的4個位中選一個,排上甲,方法有4種;其余的人任意排,方法有
A
5
5
=120種,故共有4×120=480 (種).
(2)把甲乙看成一個整體,這樣6個人變成了5個人,全排列共有
A
2
2
A
5
5
=240 (種)站法.
(3)先把甲乙二人單獨挑出來,把其余的4個人全排列,然后再把甲乙插入其余4人形成的5個空中,
方法共有
A
4
4
A
2
5
=480 (種)).
(4)先把甲乙排好,有
A
2
2
=2種方法,再從其余的4人中選出2人放到甲乙中間,方法有
A
2
4
=12種.
把排好的這4個人看做一個整體,再與其他的2個人進行排列,方法有
A
3
3
=6種.
根據(jù)分步計數(shù)原理,求得甲、乙之間間隔兩人的排法共有2×12×6=144種.
點評:本題考查排列組合的實際應(yīng)用,解題的關(guān)鍵是對于有限制的元素要優(yōu)先排,特殊位置要優(yōu)先排.相鄰的問題用捆綁法,不相鄰的問題用插空法,體現(xiàn)了分類討論的數(shù)學(xué)思想,屬中檔題..
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

六人按下列要求站一橫排,分別有多少種不同的站法?
(l)甲不站兩端;
(2)甲、乙必須相鄰;
(3)甲、乙不相鄰;
(4)甲、乙之間間隔兩人;
(5)甲不站左端,乙不站右端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

六人按下列要求站一橫排,分別有多少種不同的站法?
(1)甲不站兩端;
(2)甲、乙必須相鄰;
(3)甲、乙不相鄰;
(4)甲、乙按自左至右順序排隊(可以不相鄰)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

六人按下列要求站一橫排,分別有多少種不同的站法?

(1)甲不站兩端;

(2)甲、乙必須相鄰;

(3)甲、乙不相鄰;

(4)甲、乙之間間隔兩人;

(5)甲、乙站在兩端;

(6)甲不站左端,乙不站右端.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:陜西省2009-2010學(xué)年度第二學(xué)期期末考試高二數(shù)學(xué)(理科)試題 題型:解答題

本小題滿分10分)

六人按下列要求站一橫排,分別有多少種不同的站法?

(1)甲不站兩端;  

(2)甲、乙必須相鄰;  

(3)甲、乙不相鄰;

(4)甲、乙按自左至右順序排隊(可以不相鄰);

(5)甲、乙站在兩端.

 

查看答案和解析>>

同步練習冊答案