若橢圓mx2 + ny2 = 1與直線x+y-1=0交于A、B兩點(diǎn),過(guò)原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,則=(  )
A.     B.        C.      D. 
B

試題分析:設(shè),則,兩式相減,得:,因?yàn)檫^(guò)原點(diǎn)與線段AB中點(diǎn)的直線的斜率為,所以,所以。
點(diǎn)評(píng):在直線與橢圓的綜合應(yīng)用中,當(dāng)遇到有關(guān)弦的斜率和中點(diǎn)問(wèn)題的時(shí)候,常用點(diǎn)差法。利用點(diǎn)差法可以減少很多計(jì)算,所以在解有關(guān)問(wèn)題時(shí)用這種方法較好。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

雙曲線的離心率等于2,且與橢圓有相同的焦點(diǎn),求此雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓的右焦點(diǎn)為,右準(zhǔn)線為,離心率為,點(diǎn)在橢圓上,以為圓心,為半徑的圓與的兩個(gè)公共點(diǎn)是

(1)若是邊長(zhǎng)為的等邊三角形,求圓的方程;
(2)若三點(diǎn)在同一條直線上,且原點(diǎn)到直線的距離為,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的離心率等于,點(diǎn)在橢圓上.
(I)求橢圓的方程;
(Ⅱ)設(shè)橢圓的左右頂點(diǎn)分別為,,過(guò)點(diǎn)的動(dòng)直線與橢圓相交于,兩點(diǎn),是否存在定直線,使得的交點(diǎn)總在直線上?若存在,求出一個(gè)滿足條件的值;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線的漸近線方程為,左焦點(diǎn)為F,過(guò)的直線為,原點(diǎn)到直線的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點(diǎn)CD,問(wèn)是否存在實(shí)數(shù),使得以CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

橢圓C以拋物線的焦點(diǎn)為右焦點(diǎn),且經(jīng)過(guò)點(diǎn)A(2,3).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若分別為橢圓的左右焦點(diǎn),求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓(a>b>0)的離心率為,以原點(diǎn)為圓心,橢圓短半軸長(zhǎng)半徑的圓與直線y=x+ 相切.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓在軸上方的一個(gè)交點(diǎn)為是橢圓的右焦點(diǎn),試探究以
直徑的圓與以橢圓長(zhǎng)軸為直徑的圓的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓的左右焦點(diǎn)分別為、,由4個(gè)點(diǎn)、、組成一個(gè)高為,面積為的等腰梯形.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線和橢圓交于兩點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則的最小值為
A.            B.           C.         D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案