已知點M(,0),橢圓+y2=1與直線y=k(x+)交于點A、B,則△ABM的周長為________.

 

8

【解析】因為直線過橢圓的左焦點(-,0),所以△ABM的周長為|AB|+|AM|+|BM|=4a=8.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學人教版評估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題

(2014·鄖陽模擬)設△ABC的內角A,B,C的對邊分別為a,b,c,(a+b+c)(a-b+c)=ac.

(1)求B.

(2)若sinAsinC=,求C.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:解答題

某幼兒園準備建一個轉盤,轉盤的外圍是一個周長為k米的圓.在這個圓上安裝座位,且每個座位和圓心處的支點都有一根直的鋼管相連經(jīng)預算,轉盤上的每個座位與支點相連的鋼管的費用為3k元/根,且當兩相鄰的座位之間的圓弧長為x米時,相鄰兩座位之間的鋼管和其中一個座位的總費用為k元.假設座位等距分布,且至少有兩個座位,所有座位都視為點,且不考慮其他因素,記轉盤的總造價為y元.

(1)試寫出y關于x的函數(shù)關系式,并寫出定義域;

(2)當k=50米時,試確定座位的個數(shù),使得總造價最低?

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導數(shù)(解析版) 題型:選擇題

設a=log0.32,b=log0.33,c=20.3,d=0.32,則這四個數(shù)的大小關系是( )

A.a<b<c<d B.b<a<d<c

C.b<a<c<d D.d<c<a<b

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:解答題

已知圓C的方程為:x2+y2-2mx-2y+4m-4=0(m∈R).

(1)試求m的值,使圓C的面積最;

(2)求與滿足(1)中條件的圓C相切,且過點(1,-2)的直線方程.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 解析幾何(解析版) 題型:選擇題

設拋物線C:y2=2px(p≥0)的焦點為F,點M在C上,|MF|=5.若以MF為直徑的圓過點(0,2),則C的方程為(  )

A.y2=4x或y2=8x B.y2=2x或y2=8x

C.y2=4x或y2=16x D.y2=2x或y2=16x

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:解答題

如圖所示,PA⊥平面ABC,點C在以AB為直徑的⊙O上,∠CBA=30°,PA=AB=2,點E為線段PB的中點,點M在弧AB上,且OM∥AC.

(1)求證:平面MOE∥平面PAC.

(2)求證:平面PAC⊥平面PCB.

(3)設二面角M—BP—C的大小為θ,求cos θ的值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

在正四面體P-ABC中,D,E,F(xiàn)分別是AB,BC,CA的中點,下面四個結論中不成立的(  )

A.BC∥平面PDF

B.DF⊥平面PAE

C.平面PDE⊥平面ABC

D.平面PAE⊥平面ABC

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題

(2013·黃岡模擬)集合M={y|y=lg(x2+1),x∈R},集合N={x|4x>4,x∈R},則M∩N等于(  )

A.[0,+∞) B.[0,1) C.(1,+∞) D.(0,1]

 

查看答案和解析>>

同步練習冊答案