已知函數(shù),則關(guān)于的方程)的解的個數(shù)可能為               (寫出所有可能的結(jié)果).

 

【答案】

4、5、6                  

【解析】

試題分析:易知的取值范圍為,設(shè),則時,為雙鉤函數(shù)的一支,最小值為2,在t=1時取到;當(dāng),f(t)的取值范圍為,并且是單調(diào)遞增。分別判斷各種情況:,則只有當(dāng)t>0時有根,此時t有兩個解,而為二次函數(shù),因此x有四個根;當(dāng)a>3時,同上可知,只有t>0是有根,x有四個解;當(dāng)時,此時t>0時有兩個解,t<0時有一個解,因此x有六個根;當(dāng)時,同上,此時在t>0時有兩個解,而t<0時有一個解,但在t<0處x有唯一解,因此x有五個根。綜上,該方程根的個數(shù)可能為4、5、6個,其余個數(shù)均不可能。

考點:雙鉤函數(shù);基本不等式;二次函數(shù)的性質(zhì)。函數(shù)圖像的綜合應(yīng)用。

點評:本題考查函數(shù)的單調(diào)性,考查函數(shù)與方程的聯(lián)系,做本題的關(guān)鍵是畫出圖形,根據(jù)圖形分析出解得各種情況。有一定的難度.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點,且
OA
OB
OC
,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年安徽省六安一中高三(下)第七次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則;
②已知O、A、B、C是平面內(nèi)不同的四點,且,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達(dá)式為
(k∈N*).
其中正確命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案