已知直線y=ax+1與雙曲線3x2-y2=1交于A、B兩點

(1)若以AB為直徑的圓過坐標原點,求實數(shù)a的值;

(2)是否存在這樣的實數(shù)a,使A、B兩點關(guān)于直線y=x對稱?若存在,請求出a的值;若不存在,請說明理由.

答案:
解析:

  解析:(1)由消去y,得

  (3-a2)x2-2ax-2=0 、

  依題意

  即<a<且a≠± 、

  設(shè)A(x1,y1),B(x2,y2),

  則

  ∵以AB為直徑的圓過原點,∴OA⊥OB.

  ∴x1x2+y1y2=0.

  但y1y2=a2x1x2+a(x1+x2)+1,

  由③④,x1+x2,x1x2

  ∴(a2+1)·+a·+1=0.

  解得a=±1且滿足②.

  (2)假設(shè)存在實數(shù)a,使A、B關(guān)于y=x對稱,則直線y=ax+1與y=x垂直,

  ∴a·=-1,即a=-2.

  直線l的方程為y=-2x+1.

  將a=-2代入③得x1+x2=4.

  ∴AB中點橫坐標為2,

  縱坐標為y=-2×2+1=-3.

  但AB中點(2,-3)不在直線y=x上,

  即不存在實數(shù)a,使A、B關(guān)于直線y=x對稱.


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:云南省玉溪一中2010-2011學年高二上學期期末考試數(shù)學文科試題 題型:044

已知直線y=ax+1與雙曲線3x2-y2=1交于A、B兩點,

(1)若以AB線段為直徑的圓過坐標原點,求實數(shù)a的值.

(2)是否存在這樣的實數(shù)a,使A、B兩點關(guān)于直線對稱?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2007年福建省漳州市高中畢業(yè)班第一次質(zhì)量檢查數(shù)學試題(理科) 題型:013

已知直線y=kx+1與曲線y=x3+ax+b切于點)(1,3),則b的值為

[  ]

A.3

B.-3

C.5

D.-5

查看答案和解析>>

科目:高中數(shù)學 來源:福建省三明一中2012屆高三11月學段考試數(shù)學理科試題 題型:013

已知直線y=kx+1與曲線y=x3+ax+b相切于點(1,3)則b的值為

[  ]
A.

3

B.

-3

C.

5

D.

-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線ykx+1與曲線yx3axb切于點(1,3),則b的值為(  )

A.3          B.-3

C.5                     D.-5

查看答案和解析>>

同步練習冊答案