設F是雙曲線=1的右焦點,雙曲線兩條漸近線分別為l1,l2,過F作直線l1的垂線,分別交l1,l2于A、B兩點.若OA,AB,OB成等差數(shù)列,且向量與同向,則雙曲線離心率e的大小為________.
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習真題感悟江蘇專用?紗栴}3練習卷(解析版) 題型:填空題
已知中心在原點的雙曲線C的右焦點為F(3,0),離心率等于,則C的方程是________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測5練習卷(解析版) 題型:解答題
如圖,在三棱柱ABC ?A1B1C1中,底面△ABC是等邊三角形,D為AB中點.
(1)求證:BC1∥平面A1CD;
(2)若四邊形BCC1B1是矩形,且CD⊥DA1,求證:三棱柱ABC ?A1B1C1是正三棱柱.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測5練習卷(解析版) 題型:填空題
某老師從星期一到星期五收到的信件數(shù)分別為10,6,8,5,6,則該組數(shù)據(jù)的方差s2=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測4練習卷(解析版) 題型:解答題
已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OA與l的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測4練習卷(解析版) 題型:填空題
已知雙曲線=1(a>0,b>0)的漸近線方程為y=±x,則它的離心率為________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測3練習卷(解析版) 題型:解答題
已知函數(shù)f(x)=的圖象過原點,且關(guān)于點(-1,2)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1=f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用階段檢測3練習卷(解析版) 題型:填空題
公比為2的等比數(shù)列{an}的各項都是正數(shù),且a3a11=16,則a5=________.
查看答案和解析>>
科目:高中數(shù)學 來源:2014年高考數(shù)學(文)二輪復習專題提升訓練江蘇專用9練習卷(解析版) 題型:解答題
已知數(shù)列{an}成等比數(shù)列,且an>0.
(1)若a2-a1=8,a3=m.①當m=48時,求數(shù)列{an}的通項公式;②若數(shù)列{an}是唯一的,求m的值;
(2)若a2k+a2k-1+…+ak+1-(ak+ak-1+…+a1)=8,k∈N*,求a2k+1+a2k+2+…+a3k的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com