精英家教網 > 高中數學 > 題目詳情

已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N.

(1)當t=2時,求函數f(x)的單調遞增區(qū)間;

(2)設|MN|=g(t),試求函數g(t)的表達式

(3)在(2)的條件下,若對任意的正整數n,在區(qū)間[]內總存在m+1個實數a1,a2,…,am,am+1,使得不等式g(a1)+g(a2)+…+g(am)<g(am+1)成立,求m的最大值.

答案:
解析:

  解:(1)  4分

  (2)令 

  

  同理,由PN方程得于是,可視為方程的兩根

  

    10分

  (3)

  注意到恒成立

     14分


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:044

(溫州十校模擬)已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM、PN,切點分別為M、N

(1)t=2時,求函數f(x)的單調遞增區(qū)間;

(2)|MN|=g(t),試求函數g(t)的表達式;

(3)(2)的條件下,若對任意的正整數n,在區(qū)間內總存在m1個數,,…,,,使得不等式成立,求m的最大值.

查看答案和解析>>

科目:高中數學 來源:同升湖國際實驗學校2008屆高三數學文科第五次月考試卷、人教版 人教版 題型:044

已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N.

(1)當t=2時,求函數f(x)的單調遞增區(qū)間;

(2)設|MN|=g(t),試求函數g(t)的解析式;

(3)在(2)的條件下,若對任意的正整數n,在區(qū)間內總存在m+1個實數λ1,λ2……λm,λm+1使得不等式g(λ1)+g(λ2)+…+g(λm)<g(λm+1)成立,求m的最大值.

查看答案和解析>>

科目:高中數學 來源:0110 月考題 題型:解答題

已知函數,過點P(1,0)作曲線y=f(x)的兩條切線PM,PN,切點分別為M,N,
(1)當t=2時,求函數f(x)的單調遞增區(qū)間;
(2)設|MN|=g(t),試求函數g(t)的表達式;
(3)在(2)的條件下,若對任意的正整數n,在區(qū)間[2,n+]內,總存在m+1個數a1,a2,....,am
am+1,使得不等式g(a1)+g(a2)+...+g(am)<g(am+1)成立,求m的最大值

查看答案和解析>>

科目:高中數學 來源: 題型:

(本題滿分15分)

已知函數,過點P(1,0)作曲線的兩條切線PMPN,切點分別為M,N

   (1)當時,求函數的單調遞增區(qū)間;

   (2)設|MN|=,試求函數的表達式;

                                                                                                   

查看答案和解析>>

同步練習冊答案