分析 (1)由AB⊥PA,AB⊥AD,建立建立空間直角坐標系,利用向量法能證明平面PDE⊥平面PAC.
(2)(i)求出平面PAC的一個法向量和$\overrightarrow{PE}=(2,1,-2)$,利用向量法能求出直線PE與平面PAC所成角的正弦值.
(ii)求出平面PCD的一個法向量,利用向量法能求出二面角A-PC-D的余弦值.
解答 (本小題滿分13分)
證明:(1)∵PA⊥平面ABCD,∴AB⊥PA,
又∵AB⊥AD,故可建立建立如圖所示坐標系.
由已知D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ),(λ>0)
∴$\overrightarrow{AC}$=(2,4,0),$\overrightarrow{AP}$=(0,0,λ),$\overrightarrow{DE}$=(2,-1,0),
∴$\overrightarrow{DE}•\overrightarrow{AC}$=4-4+0=0,$\overrightarrow{DE}•\overrightarrow{AP}=0$.…(3分),
∴DE⊥AC,DE⊥AP,∴ED⊥平面PAC,
∵ED?平面PDE,平面PDE⊥平面PAC.…(4分)
解:(2)(i)由(1)得,平面PAC的一個法向量是$\overrightarrow{DE}$=(2,-1,0),
∵△PAB為等腰直角三角形,故PA=2,$\overrightarrow{PE}=(2,1,-2)$.
設(shè)直線PE與平面PAC所成的角為θ,
則$sinθ=|{cos<\overrightarrow{PE},\overrightarrow{DE}>}|$=$\frac{|\overrightarrow{PE}•\overrightarrow{DE}|}{|\overrightarrow{PE}|•|\overrightarrow{DE}|}$=$\frac{3}{\sqrt{5}•3}$=$\frac{\sqrt{5}}{5}$,
∴直線PE與平面PAC所成角的正弦值為$\frac{\sqrt{5}}{5}$.…(8分)
(ii)設(shè)平面PCD的一個法向量為$\overrightarrow{n}$=(x,y,z),
$\overrightarrow{DC}$=(2,2,0),$\overrightarrow{DP}$=(0,-2,2),
則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DC}=2x+2y=0}\\{\overrightarrow{n}•\overrightarrow{DP}=-2y+2z=0}\end{array}\right.$,令x=1,則$\overrightarrow{n}$=(1,-1,-1),…(10分)
∴cos<$\overrightarrow{n},\overrightarrow{DE}$>=$\frac{\overrightarrow{n}•\overrightarrow{DE}}{|\overrightarrow{n}|•|\overrightarrow{DE}|}$=$\frac{2+1}{\sqrt{3}×\sqrt{5}}=\frac{\sqrt{15}}{5}$.…(11分)
∵二面角A-PC-D的平面角是銳角,
∴二面角A-PC-D的余弦值為$\frac{\sqrt{15}}{5}$.…(13分)
點評 本題考查面面垂直的證明,考查線面角的正弦值和二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | 16 | C. | $\frac{1}{4}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{7}$ | C. | $2\sqrt{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{15}$ | B. | $\frac{2}{15}$ | C. | $\frac{1}{5}$ | D. | $\frac{4}{15}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com