已知函數(shù)f(x)=(x-1)2,g(x)=k(x-1),函數(shù)f(x)-g(x)其中一個零點為5,數(shù)列{an}滿足,且(an+1-an)g(an)+f(an)=0.
(1)求數(shù)列{an}通項公式:
(2)試證明;
(3)設(shè)bn=3f(an)-g(an+1),試探究數(shù)列{bn}是否存在最大項和最小項?若存在求出最大項和最小項,若不存在,說明理由.
【答案】分析:(1)根據(jù)題意先求出k的值,進而求出a1的值,然后根據(jù)(an+1-an)g(an)+f(an)=0可以求出an-1為等比數(shù)列,便可求出數(shù)列{an}通項公式;
(2)由(1)求得的數(shù)列{an}通項公式求出的表達式,再根據(jù)不等式的性質(zhì)即可證明;
(3)根據(jù)題意先求出bn的通項公式,然后令,討論bn的單調(diào)性,分別討論n=1,2,3,4時u的值,即可求出bn的最大項和最小項的值.
解答:解:(1)函數(shù)f(x)-g(x)有一個零點為5,即方程(x-1)2-k(x-1)=0,有一個根為5,
將x=5代入方程得16-4k=0,
∴k=4,∴a1=2(1分)
由(an+1-an)g(an)+f(an)=0得
4(an+1-a1)(an-1)+(an-1)2=0,
(an-1)(4an+1-4an+an-1)=0,
∴an-1=0或4an+1-4an+an-1=0,(3分)
由(1)知a1=2,∴an-1=0(舍去).
由4an+1-4an+an-1=0得4an+1=3an+(14分)
由4an+1=3an+1得an+1-1=(5分)
∴數(shù)列{an-1}是首項為a1-1=1,公比為的等比數(shù)列
∴an-1=,
∴數(shù)列{an}通項公式為an=.(6分)
(2)由(1)知∴=+n=4[1-(8分)
∵對?n∈N*,有,
+n≥1+n,
(10分)
(3)由bn=3f(an)-g(an+1)得bn=3(an-1)2-4(an+1-1)
=(11分)
,則0<u≤1,
bn=3(u2-u)=
∵函數(shù)上為增函數(shù),在上為減函數(shù)(12分)
當n=1時u=1,
當n=2時,
當n=3時,=,
當n=4時,
,且
∴當n=3時,bn有最小值,即數(shù)列{bn} 有最小項,最小項為(13分)
當n=1即u=1時,bn有最大值,即有最大項,最大項為b1=3(1-1)=0.(14分)
點評:本題考查了數(shù)列的推導(dǎo)以及函數(shù)的單調(diào)性求函數(shù)的最大值和最小值,考查了學生的計算能力和對數(shù)列、函數(shù)的綜合掌握,解題時注意整體思想和轉(zhuǎn)化思想的運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習冊答案