已知拋物線關于坐標軸對稱,頂點為坐標原點,并且經過點M(),試研究這樣的拋物線有幾條,并寫出它們的方程.

答案:
解析:

探究:因為拋物線關于坐標軸對稱,頂點為坐標原點,所以應分兩種情況,焦點在x軸上可設其方程為y2=2px(p≠0),焦點在y軸上,可設其方程為x2=2my(m≠0),將M點坐標分別代入,可求得p=,m=,故可知這樣的拋物線有兩條,一條開口向右,方程為y2x.另一條開口向下,其方程為x2


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知拋物線C:x2=2py(p>0)的焦點F與P(2,-1)關于直線l:x-y-2=0對稱,中心在坐標原點的橢圓經過兩點M(1,
7
2
),N(-
2
6
2
),且拋物線與橢圓交于兩點A(xA,yA)和B(xB,yB),且xA<xB
(1)求出拋物線方程與橢圓的標準方程;
(2)若直線l′與拋物線相切于點A,試求直線l′與坐標軸所圍成的三角形的面積;
(3)若(2)中直線l′與圓x2-2mx+y2+2y+m2-
24
25
=0恒有公共點,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

注意:第(3)小題平行班學生不必做,特保班學生必須做.
已知橢圓的焦點在x軸上,它的一個頂點恰好是拋物線x2=4y的焦點,離心率e=
2
5
,過橢圓的右焦點F作與坐標軸不垂直的直線l,交橢圓于A、B兩點.
(1)求橢圓的標準方程;
(2)設點M(m,0)是線段OF上的一個動點,且(
MA
+
MB
)⊥
AB
,求m的取值范圍;
(3)設點C是點A關于x軸的對稱點,在x軸上是否存在一個定點N,使得C、B、N三點共線?若存在,求出定點N的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線C:x2=2py(p>0)的焦點F與P(2,-1)關于直線l:x-y-2=0對稱,中心在坐標原點的橢圓經過兩點M(1,數(shù)學公式),N(-數(shù)學公式數(shù)學公式),且拋物線與橢圓交于兩點A(xA,yA)和B(xB,yB),且xA<xB
(1)求出拋物線方程與橢圓的標準方程;
(2)若直線l′與拋物線相切于點A,試求直線l′與坐標軸所圍成的三角形的面積;
(3)若(2)中直線l′與圓x2-2mx+y2+2y+m2-數(shù)學公式=0恒有公共點,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年高考數(shù)學總復習備考綜合模擬試卷(5)(解析版) 題型:解答題

已知拋物線C:x2=2py(p>0)的焦點F與P(2,-1)關于直線l:x-y-2=0對稱,中心在坐標原點的橢圓經過兩點M(1,),N(-,),且拋物線與橢圓交于兩點A(xA,yA)和B(xB,yB),且xA<xB
(1)求出拋物線方程與橢圓的標準方程;
(2)若直線l′與拋物線相切于點A,試求直線l′與坐標軸所圍成的三角形的面積;
(3)若(2)中直線l′與圓x2-2mx+y2+2y+m2-=0恒有公共點,試求m的取值范圍.

查看答案和解析>>

同步練習冊答案