已知P是以F1、F2為焦點的橢圓=1(a>b>0)上的一點,=0,tan∠PF1F2=,則此橢圓的離心率為(    )

A.             B.                C.                D.

解析:本題考查橢圓定義及三角形正弦定理的靈活應用;據(jù)題意在三角形PF1F2中,由=0可知此三角形為直角三角形,由正弦定理知

=2c(1)

由橢圓定義及三角公式可知:|PF1|+|PF2|=2a,tan∠PF1F2=sin∠PF1F2=,cos∠PF2F1=,即sin∠PF1F2+sin∠PF2F1=sin∠PF1F2+cos∠PF2F1=故(1)式即為=2c,故選D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知P是以F1,F(xiàn)2為焦點的橢圓
x2
a2
+
y2
b2
=1(a>b>0)上的一點,若PF1⊥PF2,tan∠PF1F2=
1
2
,則此橢圓的離心率為( 。
A、
1
2
B、
2
3
C、
1
3
D、
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是以F1,F(xiàn)2為焦點的雙曲線
x2
a2
-
y2
b2
=1
上的一點,若
PF1
PF2
=0,tan∠PF1F2=2,則此雙曲線的離心率為( 。
A、
5
B、5
C、2
5
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知P是以F1,F(xiàn)2為焦點的雙曲線
x2
a2
-
y2
b2
=1
上一點,
PF1
PF2
=0
,且tan∠PF1F2=
1
2
,則此雙曲線的漸近線方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年山東省聊城市高三上學期期末考試數(shù)學 題型:選擇題

已知P是以F1、F2為焦點的橢圓   則該橢圓的離心率為                                      (    )

    A.             B.             C.             D.

 

查看答案和解析>>

同步練習冊答案