已知△ABC的面積為S,角A,B,C的對(duì)邊分別為a,b,c,
AB
AC
=
3
2
S

(1)求cosA的值;
(2)若a,b,c成等差數(shù)列,求sinC的值.
(1)∵
AB
AC
=
3
2
S
,
bccosA=
3
2
×
1
2
bcsinA
,即sinA=
4
3
cosA
.…(2分)
代入sin2A+cos2A=1化簡(jiǎn)整理,得cos2A=
9
25
.…(4分)
sinA=
4
3
cosA
,可得cosA>0,
∴角A是銳角,可得cosA=
3
5
.…(6分)
(2)∵a,b,c成等差數(shù)列
∴2b=a+c,結(jié)合正弦定理得2sinB=sinA+sinC,
即2sin(A+C)=sinA+sinC,…(8分)
因此,可得2sinAcosC+2cosAsinC=sinA+sinC.①
由(1)得cosA=
3
5
sinA=
4
3
cosA
,所以sinA=
4
5
,…(10分)
代入①,整理得cosC=
4-sinC
8

結(jié)合sin2C+cos2C=1進(jìn)行整理,得65sin2C-8sinC-48=0,…(12分)
解之得sinC=
12
13
sinC=-
4
5

∵C∈(0,π),可得sinC>0
sinC=
12
13
(負(fù)值舍去).…(14分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知△ABC的面積為14,D、E分別為邊AB、BC上的點(diǎn),且AD:DB=BE:EC=2:1,AE與CD交于P.設(shè)存在λ和μ使
AP
AE
,
PD
CD
AB
=
a
,
BC
=
b

(1)求λ及μ;
(2)用
a
,
b
表示
BP

(3)求△PAC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的面積為
3
2
,且b=2,c=
3
,則sinA=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的面積為2
3
,AB=2,BC=4,則三角形的外接圓半徑為
2或
4
21
3
2或
4
21
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的面積為
1
4
(a2+b2-c2)
,則C的度數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•溫州一模)如圖,在△ABC中,AD⊥BC,垂足為D,且BD:DC:AD=2:3:6.
(Ⅰ)求∠BAC的大小;
(Ⅱ)已知△ABC的面積為15,且E為AB的中點(diǎn),求CE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案