設(shè)x,y∈R,且滿足x2+y2=1,則x+y的最大值為_(kāi)_____.
當(dāng)x>0,y>0,時(shí),x+y才有最大值,
∵1=x2+y2
(x+y)
2
2
,∴(x+y)2≤2
故答案為
2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,且滿足x2+y2=1,求x+y的最大值為( 。
A、
2
B、
3
C、2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,且滿足x-y+2=0,則
x2+y2
的最小值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R+,且滿足4x+y=40,則lgx+lgy的最大值是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,且滿足
(x-2)3+2010(x-2)=-1
(y-
1
2
)3+2010(y-
1
2
)=1
,則x+y=
5
2
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,且滿足
(x-2)3+2x+sin(x-2)=2
(y-2)3+2y+sin(y-2)=6
,則x+y=(  )
A、1B、2C、3D、4

查看答案和解析>>

同步練習(xí)冊(cè)答案